# coding=utf-8 # Copyright 2018 The Google AI Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for GLUE classification tasks.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import collections import csv import os from albert import fine_tuning_utils from albert import modeling from albert import optimization from albert import tokenization import tensorflow.compat.v1 as tf from tensorflow.contrib import data as contrib_data from tensorflow.contrib import metrics as contrib_metrics from tensorflow.contrib import tpu as contrib_tpu class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class PaddingInputExample(object): """Fake example so the num input examples is a multiple of the batch size. When running eval/predict on the TPU, we need to pad the number of examples to be a multiple of the batch size, because the TPU requires a fixed batch size. The alternative is to drop the last batch, which is bad because it means the entire output data won't be generated. We use this class instead of `None` because treating `None` as padding battches could cause silent errors. """ class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, guid=None, example_id=None, is_real_example=True): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.example_id = example_id self.guid = guid self.is_real_example = is_real_example class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def __init__(self, use_spm, do_lower_case): super(DataProcessor, self).__init__() self.use_spm = use_spm self.do_lower_case = do_lower_case def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines def process_text(self, text): if self.use_spm: return tokenization.preprocess_text(text, lower=self.do_lower_case) else: return tokenization.convert_to_unicode(text) class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "MNLI", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "MNLI", "dev_matched.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "MNLI", "test_matched.tsv")), "test") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue # Note(mingdachen): We will rely on this guid for GLUE submission. guid = self.process_text(line[0]) text_a = self.process_text(line[8]) text_b = self.process_text(line[9]) if set_type == "test": label = "contradiction" else: label = self.process_text(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MisMnliProcessor(MnliProcessor): """Processor for the Mismatched MultiNLI data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "MNLI", "dev_mismatched.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "MNLI", "test_mismatched.tsv")), "test") class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "MRPC", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "MRPC", "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "MRPC", "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = self.process_text(line[3]) text_b = self.process_text(line[4]) if set_type == "test": guid = line[0] label = "0" else: label = self.process_text(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "CoLA", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "CoLA", "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "CoLA", "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): # Only the test set has a header if set_type == "test" and i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": guid = line[0] text_a = self.process_text(line[1]) label = "0" else: text_a = self.process_text(line[3]) label = self.process_text(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "SST-2", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "SST-2", "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "SST-2", "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue if set_type != "test": guid = "%s-%s" % (set_type, i) text_a = self.process_text(line[0]) label = self.process_text(line[1]) else: guid = self.process_text(line[0]) # guid = "%s-%s" % (set_type, line[0]) text_a = self.process_text(line[1]) label = "0" examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "STS-B", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "STS-B", "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "STS-B", "test.tsv")), "test") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = self.process_text(line[0]) # guid = "%s-%s" % (set_type, line[0]) text_a = self.process_text(line[7]) text_b = self.process_text(line[8]) if set_type != "test": label = float(line[-1]) else: label = 0 examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "QQP", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "QQP", "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "QQP", "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = line[0] # guid = "%s-%s" % (set_type, line[0]) if set_type != "test": try: text_a = self.process_text(line[3]) text_b = self.process_text(line[4]) label = self.process_text(line[5]) except IndexError: continue else: text_a = self.process_text(line[1]) text_b = self.process_text(line[2]) label = "0" examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "QNLI", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "QNLI", "dev.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "QNLI", "test.tsv")), "test_matched") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = self.process_text(line[0]) # guid = "%s-%s" % (set_type, line[0]) text_a = self.process_text(line[1]) text_b = self.process_text(line[2]) if set_type == "test_matched": label = "entailment" else: label = self.process_text(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "RTE", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "RTE", "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "RTE", "test.tsv")), "test") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = self.process_text(line[0]) # guid = "%s-%s" % (set_type, line[0]) text_a = self.process_text(line[1]) text_b = self.process_text(line[2]) if set_type == "test": label = "entailment" else: label = self.process_text(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "WNLI", "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "WNLI", "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "WNLI", "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = self.process_text(line[0]) # guid = "%s-%s" % (set_type, line[0]) text_a = self.process_text(line[1]) text_b = self.process_text(line[2]) if set_type != "test": label = self.process_text(line[-1]) else: label = "0" examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class AXProcessor(DataProcessor): """Processor for the AX data set (GLUE version).""" def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "diagnostic", "diagnostic.tsv")), "test") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue # Note(mingdachen): We will rely on this guid for GLUE submission. guid = self.process_text(line[0]) text_a = self.process_text(line[1]) text_b = self.process_text(line[2]) if set_type == "test": label = "contradiction" else: label = self.process_text(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, task_name): """Converts a single `InputExample` into a single `InputFeatures`.""" if isinstance(example, PaddingInputExample): return InputFeatures( input_ids=[0] * max_seq_length, input_mask=[0] * max_seq_length, segment_ids=[0] * max_seq_length, label_id=0, is_real_example=False) if task_name != "sts-b": label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in ALBERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length if task_name != "sts-b": label_id = label_map[example.label] else: label_id = example.label if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) return feature def file_based_convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, output_file, task_name): """Convert a set of `InputExample`s to a TFRecord file.""" writer = tf.python_io.TFRecordWriter(output_file) for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, task_name) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f def create_float_feature(values): f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) return f features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) features["label_ids"] = create_float_feature([feature.label_id])\ if task_name == "sts-b" else create_int_feature([feature.label_id]) features["is_real_example"] = create_int_feature( [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder, task_name, use_tpu, bsz, multiple=1): """Creates an `input_fn` closure to be passed to TPUEstimator.""" labeltype = tf.float32 if task_name == "sts-b" else tf.int64 name_to_features = { "input_ids": tf.FixedLenFeature([seq_length * multiple], tf.int64), "input_mask": tf.FixedLenFeature([seq_length * multiple], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length * multiple], tf.int64), "label_ids": tf.FixedLenFeature([], labeltype), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" if use_tpu: batch_size = params["batch_size"] else: batch_size = bsz # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( contrib_data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def create_model(albert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels, use_one_hot_embeddings, task_name, hub_module): """Creates a classification model.""" (output_layer, _) = fine_tuning_utils.create_albert( albert_config=albert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings, use_einsum=True, hub_module=hub_module) hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if task_name != "sts-b": probabilities = tf.nn.softmax(logits, axis=-1) predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) else: probabilities = logits logits = tf.squeeze(logits, [-1]) predictions = logits per_example_loss = tf.square(logits - labels) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, probabilities, logits, predictions) def model_fn_builder(albert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings, task_name, hub_module=None, optimizer="adamw"): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_real_example = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, probabilities, logits, predictions) = \ create_model(albert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings, task_name, hub_module) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu, optimizer) output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: if task_name not in ["sts-b", "cola"]: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean( values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } elif task_name == "sts-b": def metric_fn(per_example_loss, label_ids, logits, is_real_example): """Compute Pearson correlations for STS-B.""" # Display labels and predictions concat1 = contrib_metrics.streaming_concat(logits) concat2 = contrib_metrics.streaming_concat(label_ids) # Compute Pearson correlation pearson = contrib_metrics.streaming_pearson_correlation( logits, label_ids, weights=is_real_example) # Compute MSE # mse = tf.metrics.mean(per_example_loss) mse = tf.metrics.mean_squared_error( label_ids, logits, weights=is_real_example) loss = tf.metrics.mean( values=per_example_loss, weights=is_real_example) return {"pred": concat1, "label_ids": concat2, "pearson": pearson, "MSE": mse, "eval_loss": loss,} elif task_name == "cola": def metric_fn(per_example_loss, label_ids, logits, is_real_example): """Compute Matthew's correlations for STS-B.""" predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) # https://en.wikipedia.org/wiki/Matthews_correlation_coefficient tp, tp_op = tf.metrics.true_positives( predictions, label_ids, weights=is_real_example) tn, tn_op = tf.metrics.true_negatives( predictions, label_ids, weights=is_real_example) fp, fp_op = tf.metrics.false_positives( predictions, label_ids, weights=is_real_example) fn, fn_op = tf.metrics.false_negatives( predictions, label_ids, weights=is_real_example) # Compute Matthew's correlation mcc = tf.div_no_nan( tp * tn - fp * fn, tf.pow((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn), 0.5)) # Compute accuracy accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean( values=per_example_loss, weights=is_real_example) return {"matthew_corr": (mcc, tf.group(tp_op, tn_op, fp_op, fn_op)), "eval_accuracy": accuracy, "eval_loss": loss,} eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, predictions={ "probabilities": probabilities, "predictions": predictions }, scaffold_fn=scaffold_fn) return output_spec return model_fn # This function is not used by this file but is still used by the Colab and # people who depend on it. def input_fn_builder(features, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_label_ids = [] for feature in features: all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_label_ids.append(feature.label_id) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), }) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn # This function is not used by this file but is still used by the Colab and # people who depend on it. def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, task_name): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, task_name) features.append(feature) return features