sunny77's picture
Added files
798053e
raw
history blame
1.19 kB
#importing dependencies
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFDirectoryLoader
import time
#loading data
loader = PyPDFDirectoryLoader('data/')
documents = loader.load()
print(len(documents))
#splitting
splitter = RecursiveCharacterTextSplitter(chunk_size = 10000, chunk_overlap = 500)
text_chunks = splitter.split_documents(documents)
print(len(text_chunks))
#loading HuggingFaceBGE embeddings
model_name = "BAAI/bge-small-en"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
)
print('Embeddings loaded!')
# creating NCERT Textbooks vector database.
t1 = time.time()
persist_directory = 'dbname'
vectordb = Chroma.from_documents(
documents = text_chunks,
embedding = embeddings,
collection_metadata = {"hnsw:space": "cosine"},
persist_directory = persist_directory
)
t2 = time.time()
print('Time taken for building db : ', (t2 - t1))