Spaces:
Build error
Build error
import numpy as np | |
import torch | |
import torch.nn as nn | |
def calc_iou(a, b): | |
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]) | |
iw = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 0]) | |
ih = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 1]) | |
iw = torch.clamp(iw, min=0) | |
ih = torch.clamp(ih, min=0) | |
ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih | |
ua = torch.clamp(ua, min=1e-8) | |
intersection = iw * ih | |
IoU = intersection / ua | |
return IoU | |
class FocalLoss(nn.Module): | |
#def __init__(self): | |
def forward(self, classifications, regressions, anchors, annotations): | |
alpha = 0.25 | |
gamma = 2.0 | |
batch_size = classifications.shape[0] | |
classification_losses = [] | |
regression_losses = [] | |
anchor = anchors[0, :, :] | |
anchor_widths = anchor[:, 2] - anchor[:, 0] | |
anchor_heights = anchor[:, 3] - anchor[:, 1] | |
anchor_ctr_x = anchor[:, 0] + 0.5 * anchor_widths | |
anchor_ctr_y = anchor[:, 1] + 0.5 * anchor_heights | |
for j in range(batch_size): | |
classification = classifications[j, :, :] | |
regression = regressions[j, :, :] | |
bbox_annotation = annotations[j, :, :] | |
bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1] | |
classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4) | |
if bbox_annotation.shape[0] == 0: | |
if torch.cuda.is_available(): | |
alpha_factor = torch.ones(classification.shape).cuda() * alpha | |
alpha_factor = 1. - alpha_factor | |
focal_weight = classification | |
focal_weight = alpha_factor * torch.pow(focal_weight, gamma) | |
bce = -(torch.log(1.0 - classification)) | |
# cls_loss = focal_weight * torch.pow(bce, gamma) | |
cls_loss = focal_weight * bce | |
classification_losses.append(cls_loss.sum()) | |
regression_losses.append(torch.tensor(0).float().cuda()) | |
else: | |
alpha_factor = torch.ones(classification.shape) * alpha | |
alpha_factor = 1. - alpha_factor | |
focal_weight = classification | |
focal_weight = alpha_factor * torch.pow(focal_weight, gamma) | |
bce = -(torch.log(1.0 - classification)) | |
# cls_loss = focal_weight * torch.pow(bce, gamma) | |
cls_loss = focal_weight * bce | |
classification_losses.append(cls_loss.sum()) | |
regression_losses.append(torch.tensor(0).float()) | |
continue | |
IoU = calc_iou(anchors[0, :, :], bbox_annotation[:, :4]) # num_anchors x num_annotations | |
IoU_max, IoU_argmax = torch.max(IoU, dim=1) # num_anchors x 1 | |
#import pdb | |
#pdb.set_trace() | |
# compute the loss for classification | |
targets = torch.ones(classification.shape) * -1 | |
if torch.cuda.is_available(): | |
targets = targets.cuda() | |
targets[torch.lt(IoU_max, 0.4), :] = 0 | |
positive_indices = torch.ge(IoU_max, 0.5) | |
num_positive_anchors = positive_indices.sum() | |
assigned_annotations = bbox_annotation[IoU_argmax, :] | |
targets[positive_indices, :] = 0 | |
targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1 | |
if torch.cuda.is_available(): | |
alpha_factor = torch.ones(targets.shape).cuda() * alpha | |
else: | |
alpha_factor = torch.ones(targets.shape) * alpha | |
alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor) | |
focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification) | |
focal_weight = alpha_factor * torch.pow(focal_weight, gamma) | |
bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification)) | |
# cls_loss = focal_weight * torch.pow(bce, gamma) | |
cls_loss = focal_weight * bce | |
if torch.cuda.is_available(): | |
cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros(cls_loss.shape).cuda()) | |
else: | |
cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros(cls_loss.shape)) | |
classification_losses.append(cls_loss.sum()/torch.clamp(num_positive_anchors.float(), min=1.0)) | |
# compute the loss for regression | |
if positive_indices.sum() > 0: | |
assigned_annotations = assigned_annotations[positive_indices, :] | |
anchor_widths_pi = anchor_widths[positive_indices] | |
anchor_heights_pi = anchor_heights[positive_indices] | |
anchor_ctr_x_pi = anchor_ctr_x[positive_indices] | |
anchor_ctr_y_pi = anchor_ctr_y[positive_indices] | |
gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0] | |
gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1] | |
gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths | |
gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights | |
# clip widths to 1 | |
gt_widths = torch.clamp(gt_widths, min=1) | |
gt_heights = torch.clamp(gt_heights, min=1) | |
targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi | |
targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi | |
targets_dw = torch.log(gt_widths / anchor_widths_pi) | |
targets_dh = torch.log(gt_heights / anchor_heights_pi) | |
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh)) | |
targets = targets.t() | |
if torch.cuda.is_available(): | |
targets = targets/torch.Tensor([[0.1, 0.1, 0.2, 0.2]]).cuda() | |
else: | |
targets = targets/torch.Tensor([[0.1, 0.1, 0.2, 0.2]]) | |
negative_indices = 1 + (~positive_indices) | |
regression_diff = torch.abs(targets - regression[positive_indices, :]) | |
regression_loss = torch.where( | |
torch.le(regression_diff, 1.0 / 9.0), | |
0.5 * 9.0 * torch.pow(regression_diff, 2), | |
regression_diff - 0.5 / 9.0 | |
) | |
regression_losses.append(regression_loss.mean()) | |
else: | |
if torch.cuda.is_available(): | |
regression_losses.append(torch.tensor(0).float().cuda()) | |
else: | |
regression_losses.append(torch.tensor(0).float()) | |
return torch.stack(classification_losses).mean(dim=0, keepdim=True), torch.stack(regression_losses).mean(dim=0, keepdim=True) | |