Spaces:
Build error
Build error
added streamlit app
Browse files
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import os.path
|
3 |
+
import time
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import gdown
|
7 |
+
import numpy as np
|
8 |
+
import streamlit as st
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
def load_classes(csv_reader):
|
13 |
+
"""
|
14 |
+
Load classes from csv.
|
15 |
+
|
16 |
+
:param csv_reader: csv
|
17 |
+
:return:
|
18 |
+
"""
|
19 |
+
result = {}
|
20 |
+
|
21 |
+
for line, row in enumerate(csv_reader):
|
22 |
+
line += 1
|
23 |
+
|
24 |
+
try:
|
25 |
+
class_name, class_id = row
|
26 |
+
except ValueError:
|
27 |
+
raise (ValueError('line {}: format should be \'class_name,class_id\''.format(line)))
|
28 |
+
class_id = int(class_id)
|
29 |
+
|
30 |
+
if class_name in result:
|
31 |
+
raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name))
|
32 |
+
result[class_name] = class_id
|
33 |
+
return result
|
34 |
+
|
35 |
+
|
36 |
+
@st.cache
|
37 |
+
def draw_caption(image, box, caption):
|
38 |
+
"""
|
39 |
+
Draw caption and bbox on image.
|
40 |
+
|
41 |
+
:param image: image
|
42 |
+
:param box: bounding box
|
43 |
+
:param caption: caption
|
44 |
+
:return:
|
45 |
+
"""
|
46 |
+
|
47 |
+
b = np.array(box).astype(int)
|
48 |
+
cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 2)
|
49 |
+
cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1)
|
50 |
+
|
51 |
+
|
52 |
+
@st.cache
|
53 |
+
def load_labels():
|
54 |
+
"""
|
55 |
+
Loads labels.
|
56 |
+
|
57 |
+
:return:
|
58 |
+
"""
|
59 |
+
|
60 |
+
with open("dataset/labels.csv", 'r') as f:
|
61 |
+
classes = load_classes(csv.reader(f, delimiter=','))
|
62 |
+
|
63 |
+
labels = {}
|
64 |
+
for key, value in classes.items():
|
65 |
+
labels[value] = key
|
66 |
+
|
67 |
+
return labels
|
68 |
+
|
69 |
+
|
70 |
+
def download_models(ids):
|
71 |
+
"""
|
72 |
+
Download all models.
|
73 |
+
|
74 |
+
:param ids: name and links of models
|
75 |
+
:return:
|
76 |
+
"""
|
77 |
+
|
78 |
+
# Download model from drive if not stored locally
|
79 |
+
with st.spinner('Downloading models, this may take a minute...'):
|
80 |
+
for key in ids:
|
81 |
+
if not os.path.isfile(f"model/{key}.pt"):
|
82 |
+
url = f"https://drive.google.com/uc?id={ids[key]}"
|
83 |
+
gdown.download(url=url, output=f"model/{key}.pt")
|
84 |
+
|
85 |
+
|
86 |
+
@st.cache(suppress_st_warning=True)
|
87 |
+
def load_model(model_path, prefix: str = 'model/'):
|
88 |
+
"""
|
89 |
+
Load model.
|
90 |
+
|
91 |
+
:param model_path: path to inference model
|
92 |
+
:param prefix: model prefix if needed
|
93 |
+
:return:
|
94 |
+
"""
|
95 |
+
|
96 |
+
# Load model
|
97 |
+
if torch.cuda.is_available():
|
98 |
+
model = torch.load(f"{prefix}{model_path}.pt").to('cuda')
|
99 |
+
else:
|
100 |
+
model = torch.load(f"{prefix}{model_path}.pt", map_location=torch.device('cpu'))
|
101 |
+
model = model.module.cpu()
|
102 |
+
model.training = False
|
103 |
+
model.eval()
|
104 |
+
|
105 |
+
return model
|
106 |
+
|
107 |
+
|
108 |
+
def process_img(model, image, labels, caption: bool = True):
|
109 |
+
"""
|
110 |
+
Process img given a model.
|
111 |
+
|
112 |
+
:param caption: whether to use captions or not
|
113 |
+
:param image: image to process
|
114 |
+
:param model: inference model
|
115 |
+
:param labels: given labels
|
116 |
+
:return:
|
117 |
+
"""
|
118 |
+
|
119 |
+
image_orig = image.copy()
|
120 |
+
rows, cols, cns = image.shape
|
121 |
+
|
122 |
+
smallest_side = min(rows, cols)
|
123 |
+
|
124 |
+
# Rescale the image
|
125 |
+
min_side = 608
|
126 |
+
max_side = 1024
|
127 |
+
scale = min_side / smallest_side
|
128 |
+
|
129 |
+
# Check if the largest side is now greater than max_side
|
130 |
+
largest_side = max(rows, cols)
|
131 |
+
|
132 |
+
if largest_side * scale > max_side:
|
133 |
+
scale = max_side / largest_side
|
134 |
+
|
135 |
+
# Resize the image with the computed scale
|
136 |
+
image = cv2.resize(image, (int(round(cols * scale)), int(round((rows * scale)))))
|
137 |
+
rows, cols, cns = image.shape
|
138 |
+
|
139 |
+
pad_w = 32 - rows % 32
|
140 |
+
pad_h = 32 - cols % 32
|
141 |
+
|
142 |
+
new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
|
143 |
+
new_image[:rows, :cols, :] = image.astype(np.float32)
|
144 |
+
image = new_image.astype(np.float32)
|
145 |
+
image /= 255
|
146 |
+
image -= [0.485, 0.456, 0.406]
|
147 |
+
image /= [0.229, 0.224, 0.225]
|
148 |
+
image = np.expand_dims(image, 0)
|
149 |
+
image = np.transpose(image, (0, 3, 1, 2))
|
150 |
+
|
151 |
+
with torch.no_grad():
|
152 |
+
|
153 |
+
image = torch.from_numpy(image)
|
154 |
+
if torch.cuda.is_available():
|
155 |
+
image = image.cuda()
|
156 |
+
|
157 |
+
st = time.time()
|
158 |
+
scores, classification, transformed_anchors = model(image.float())
|
159 |
+
elapsed_time = time.time() - st
|
160 |
+
idxs = np.where(scores.cpu() > 0.5)
|
161 |
+
|
162 |
+
for j in range(idxs[0].shape[0]):
|
163 |
+
bbox = transformed_anchors[idxs[0][j], :]
|
164 |
+
|
165 |
+
x1 = int(bbox[0] / scale)
|
166 |
+
y1 = int(bbox[1] / scale)
|
167 |
+
x2 = int(bbox[2] / scale)
|
168 |
+
y2 = int(bbox[3] / scale)
|
169 |
+
label_name = labels[int(classification[idxs[0][j]])]
|
170 |
+
colors = {
|
171 |
+
'with_mask': (0, 255, 0),
|
172 |
+
'without_mask': (255, 0, 0),
|
173 |
+
'mask_weared_incorrect': (190, 100, 20)
|
174 |
+
}
|
175 |
+
cap = '{}'.format(label_name) if caption else ''
|
176 |
+
draw_caption(image_orig, (x1, y1, x2, y2), cap)
|
177 |
+
cv2.rectangle(image_orig, (x1, y1), (x2, y2), color=colors[label_name], thickness=2)
|
178 |
+
cv2.putText(image_orig,
|
179 |
+
f"{'{:.1f}'.format(1 / float(elapsed_time))}{' cuda:' + str(torch.cuda.is_available()).lower()}",
|
180 |
+
fontScale=1, fontFace=cv2.FONT_HERSHEY_PLAIN, org=(10, 20), color=(0, 255, 0))
|
181 |
+
return image_orig
|
182 |
+
|
183 |
+
|
184 |
+
# Page config
|
185 |
+
st.set_page_config(layout="centered")
|
186 |
+
st.sidebar.title("Face Mask Detection")
|
187 |
+
|
188 |
+
# Models drive ids
|
189 |
+
ids = {
|
190 |
+
'resnet50_20': st.secrets['resnet50'],
|
191 |
+
# 'resnet50_29': '1E_IOIuE5OpO4tQgTbXjdAmXR-9BCxxmT',
|
192 |
+
'resnet152_20': st.secrets['resnet152'],
|
193 |
+
}
|
194 |
+
|
195 |
+
# Download all models from drive
|
196 |
+
download_models(ids)
|
197 |
+
|
198 |
+
# Model selection
|
199 |
+
labels = load_labels()
|
200 |
+
model_path = st.selectbox('Choose a model', options=[k for k in ids], index=0)
|
201 |
+
model = load_model(model_path=model_path) if model_path != '' else None
|
202 |
+
|
203 |
+
# Content
|
204 |
+
st.title('Face Mask Detection')
|
205 |
+
st.write('ResNet[18~152] trained for Face Mask Detection. ')
|
206 |
+
st.markdown(f"__Labels:__ with_mask, without_mask, mask_weared_incorrect")
|
207 |
+
|
208 |
+
# Display example selection
|
209 |
+
index = st.number_input('', min_value=0, max_value=852, value=495, help='Choose an image. ')
|
210 |
+
|
211 |
+
left, right = st.columns([3, 1])
|
212 |
+
|
213 |
+
# Get corresponding image and transform it
|
214 |
+
image = cv2.imread(f'dataset/validation/image/maksssksksss{str(index)}.jpg')
|
215 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
216 |
+
|
217 |
+
# Process img
|
218 |
+
with st.spinner('Please wait while the image is being processed... This may take a while. '):
|
219 |
+
image = process_img(model, image, labels, caption=False)
|
220 |
+
|
221 |
+
left.image(image)
|
222 |
+
|
223 |
+
# Write labels dict and device on right
|
224 |
+
right.write({
|
225 |
+
'green': 'with_mask',
|
226 |
+
'orange': 'mask_weared_incorrect',
|
227 |
+
'red': 'without_mask'
|
228 |
+
})
|
229 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
230 |
+
right.write(device)
|