from pycocotools.cocoeval import COCOeval import json import torch def evaluate_coco(dataset, model, threshold=0.05): model.eval() with torch.no_grad(): # start collecting results results = [] image_ids = [] for index in range(len(dataset)): data = dataset[index] scale = data['scale'] # run network if torch.cuda.is_available(): scores, labels, boxes = model(data['img'].permute(2, 0, 1).cuda().float().unsqueeze(dim=0)) else: scores, labels, boxes = model(data['img'].permute(2, 0, 1).float().unsqueeze(dim=0)) scores = scores.cpu() labels = labels.cpu() boxes = boxes.cpu() # correct boxes for image scale boxes /= scale if boxes.shape[0] > 0: # change to (x, y, w, h) (MS COCO standard) boxes[:, 2] -= boxes[:, 0] boxes[:, 3] -= boxes[:, 1] # compute predicted labels and scores #for box, score, label in zip(boxes[0], scores[0], labels[0]): for box_id in range(boxes.shape[0]): score = float(scores[box_id]) label = int(labels[box_id]) box = boxes[box_id, :] # scores are sorted, so we can break if score < threshold: break # append detection for each positively labeled class image_result = { 'image_id' : dataset.image_ids[index], 'category_id' : dataset.label_to_coco_label(label), 'score' : float(score), 'bbox' : box.tolist(), } # append detection to results results.append(image_result) # append image to list of processed images image_ids.append(dataset.image_ids[index]) # print progress print('{}/{}'.format(index, len(dataset)), end='\r') if not len(results): return # write output json.dump(results, open('{}_bbox_results.json'.format(dataset.set_name), 'w'), indent=4) # load results in COCO evaluation tool coco_true = dataset.coco coco_pred = coco_true.loadRes('{}_bbox_results.json'.format(dataset.set_name)) # run COCO evaluation coco_eval = COCOeval(coco_true, coco_pred, 'bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() model.train() return