from __future__ import print_function, division import sys import os import torch import numpy as np import random import csv from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from torch.utils.data.sampler import Sampler from pycocotools.coco import COCO import skimage.io import skimage.transform import skimage.color import skimage from PIL import Image class CocoDataset(Dataset): """Coco dataset.""" def __init__(self, root_dir, set_name='train2017', transform=None): """ Args: root_dir (string): COCO directory. transform (callable, optional): Optional transform to be applied on a sample. """ self.root_dir = root_dir self.set_name = set_name self.transform = transform self.coco = COCO(os.path.join(self.root_dir, 'annotations', 'instances_' + self.set_name + '.json')) self.image_ids = self.coco.getImgIds() self.load_classes() def load_classes(self): # load class names (name -> label) categories = self.coco.loadCats(self.coco.getCatIds()) categories.sort(key=lambda x: x['id']) self.classes = {} self.coco_labels = {} self.coco_labels_inverse = {} for c in categories: self.coco_labels[len(self.classes)] = c['id'] self.coco_labels_inverse[c['id']] = len(self.classes) self.classes[c['name']] = len(self.classes) # also load the reverse (label -> name) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key def __len__(self): return len(self.image_ids) def __getitem__(self, idx): img = self.load_image(idx) annot = self.load_annotations(idx) sample = {'img': img, 'annot': annot} if self.transform: sample = self.transform(sample) return sample def load_image(self, image_index): image_info = self.coco.loadImgs(self.image_ids[image_index])[0] path = os.path.join(self.root_dir, 'images', self.set_name, image_info['file_name']) img = skimage.io.imread(path) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) return img.astype(np.float32)/255.0 def load_annotations(self, image_index): # get ground truth annotations annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False) annotations = np.zeros((0, 5)) # some images appear to miss annotations (like image with id 257034) if len(annotations_ids) == 0: return annotations # parse annotations coco_annotations = self.coco.loadAnns(annotations_ids) for idx, a in enumerate(coco_annotations): # some annotations have basically no width / height, skip them if a['bbox'][2] < 1 or a['bbox'][3] < 1: continue annotation = np.zeros((1, 5)) annotation[0, :4] = a['bbox'] annotation[0, 4] = self.coco_label_to_label(a['category_id']) annotations = np.append(annotations, annotation, axis=0) # transform from [x, y, w, h] to [x1, y1, x2, y2] annotations[:, 2] = annotations[:, 0] + annotations[:, 2] annotations[:, 3] = annotations[:, 1] + annotations[:, 3] return annotations def coco_label_to_label(self, coco_label): return self.coco_labels_inverse[coco_label] def label_to_coco_label(self, label): return self.coco_labels[label] def image_aspect_ratio(self, image_index): image = self.coco.loadImgs(self.image_ids[image_index])[0] return float(image['width']) / float(image['height']) def num_classes(self): return 80 class CSVDataset(Dataset): """CSV dataset.""" def __init__(self, train_file, class_list, transform=None): """ Args: train_file (string): CSV file with training annotations annotations (string): CSV file with class list test_file (string, optional): CSV file with testing annotations """ self.train_file = train_file self.class_list = class_list self.transform = transform # parse the provided class file try: with self._open_for_csv(self.class_list) as file: self.classes = self.load_classes(csv.reader(file, delimiter=',')) except ValueError as e: raise(ValueError('invalid CSV class file: {}: {}'.format(self.class_list, e))) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key # csv with img_path, x1, y1, x2, y2, class_name try: with self._open_for_csv(self.train_file) as file: self.image_data = self._read_annotations(csv.reader(file, delimiter=','), self.classes) except ValueError as e: raise(ValueError('invalid CSV annotations file: {}: {}'.format(self.train_file, e))) self.image_names = list(self.image_data.keys()) def _parse(self, value, function, fmt): """ Parse a string into a value, and format a nice ValueError if it fails. Returns `function(value)`. Any `ValueError` raised is catched and a new `ValueError` is raised with message `fmt.format(e)`, where `e` is the caught `ValueError`. """ try: return function(value) except ValueError as e: raise_from(ValueError(fmt.format(e)), None) def _open_for_csv(self, path): """ Open a file with flags suitable for csv.reader. This is different for python2 it means with mode 'rb', for python3 this means 'r' with "universal newlines". """ if sys.version_info[0] < 3: return open(path, 'rb') else: return open(path, 'r', newline='') def load_classes(self, csv_reader): result = {} for line, row in enumerate(csv_reader): line += 1 try: class_name, class_id = row except ValueError: raise(ValueError('line {}: format should be \'class_name,class_id\''.format(line))) class_id = self._parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line)) if class_name in result: raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name)) result[class_name] = class_id return result def __len__(self): return len(self.image_names) def __getitem__(self, idx): img = self.load_image(idx) annot = self.load_annotations(idx) sample = {'img': img, 'annot': annot} if self.transform: sample = self.transform(sample) return sample def load_image(self, image_index): img = skimage.io.imread(self.image_names[image_index]) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) return img.astype(np.float32)/255.0 def load_annotations(self, image_index): # get ground truth annotations annotation_list = self.image_data[self.image_names[image_index]] annotations = np.zeros((0, 5)) # some images appear to miss annotations (like image with id 257034) if len(annotation_list) == 0: return annotations # parse annotations for idx, a in enumerate(annotation_list): # some annotations have basically no width / height, skip them x1 = a['x1'] x2 = a['x2'] y1 = a['y1'] y2 = a['y2'] if (x2-x1) < 1 or (y2-y1) < 1: continue annotation = np.zeros((1, 5)) annotation[0, 0] = x1 annotation[0, 1] = y1 annotation[0, 2] = x2 annotation[0, 3] = y2 annotation[0, 4] = self.name_to_label(a['class']) annotations = np.append(annotations, annotation, axis=0) return annotations def _read_annotations(self, csv_reader, classes): result = {} for line, row in enumerate(csv_reader): line += 1 try: img_file, x1, y1, x2, y2, class_name = row[:6] except ValueError: raise_from(ValueError('line {}: format should be \'img_file,x1,y1,x2,y2,class_name\' or \'img_file,,,,,\''.format(line)), None) if img_file not in result: result[img_file] = [] # If a row contains only an image path, it's an image without annotations. if (x1, y1, x2, y2, class_name) == ('', '', '', '', ''): continue x1 = self._parse(x1, int, 'line {}: malformed x1: {{}}'.format(line)) y1 = self._parse(y1, int, 'line {}: malformed y1: {{}}'.format(line)) x2 = self._parse(x2, int, 'line {}: malformed x2: {{}}'.format(line)) y2 = self._parse(y2, int, 'line {}: malformed y2: {{}}'.format(line)) # Check that the bounding box is valid. if x2 <= x1: raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1)) if y2 <= y1: raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1)) # check if the current class name is correctly present if class_name not in classes: raise ValueError('line {}: unknown class name: \'{}\' (classes: {})'.format(line, class_name, classes)) result[img_file].append({'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': class_name}) return result def name_to_label(self, name): return self.classes[name] def label_to_name(self, label): return self.labels[label] def num_classes(self): return max(self.classes.values()) + 1 def image_aspect_ratio(self, image_index): image = Image.open(self.image_names[image_index]) return float(image.width) / float(image.height) def collater(data): imgs = [s['img'] for s in data] annots = [s['annot'] for s in data] scales = [s['scale'] for s in data] widths = [int(s.shape[0]) for s in imgs] heights = [int(s.shape[1]) for s in imgs] batch_size = len(imgs) max_width = np.array(widths).max() max_height = np.array(heights).max() padded_imgs = torch.zeros(batch_size, max_width, max_height, 3) for i in range(batch_size): img = imgs[i] padded_imgs[i, :int(img.shape[0]), :int(img.shape[1]), :] = img max_num_annots = max(annot.shape[0] for annot in annots) if max_num_annots > 0: annot_padded = torch.ones((len(annots), max_num_annots, 5)) * -1 if max_num_annots > 0: for idx, annot in enumerate(annots): #print(annot.shape) if annot.shape[0] > 0: annot_padded[idx, :annot.shape[0], :] = annot else: annot_padded = torch.ones((len(annots), 1, 5)) * -1 padded_imgs = padded_imgs.permute(0, 3, 1, 2) return {'img': padded_imgs, 'annot': annot_padded, 'scale': scales} class Resizer(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample, min_side=608, max_side=1024): image, annots = sample['img'], sample['annot'] rows, cols, cns = image.shape smallest_side = min(rows, cols) # rescale the image so the smallest side is min_side scale = min_side / smallest_side # check if the largest side is now greater than max_side, which can happen # when images have a large aspect ratio largest_side = max(rows, cols) if largest_side * scale > max_side: scale = max_side / largest_side # resize the image with the computed scale image = skimage.transform.resize(image, (int(round(rows*scale)), int(round((cols*scale))))) rows, cols, cns = image.shape pad_w = 32 - rows%32 pad_h = 32 - cols%32 new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32) new_image[:rows, :cols, :] = image.astype(np.float32) annots[:, :4] *= scale return {'img': torch.from_numpy(new_image), 'annot': torch.from_numpy(annots), 'scale': scale} class Augmenter(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample, flip_x=0.5): if np.random.rand() < flip_x: image, annots = sample['img'], sample['annot'] image = image[:, ::-1, :] rows, cols, channels = image.shape x1 = annots[:, 0].copy() x2 = annots[:, 2].copy() x_tmp = x1.copy() annots[:, 0] = cols - x2 annots[:, 2] = cols - x_tmp sample = {'img': image, 'annot': annots} return sample class Normalizer(object): def __init__(self): self.mean = np.array([[[0.485, 0.456, 0.406]]]) self.std = np.array([[[0.229, 0.224, 0.225]]]) def __call__(self, sample): image, annots = sample['img'], sample['annot'] return {'img':((image.astype(np.float32)-self.mean)/self.std), 'annot': annots} class UnNormalizer(object): def __init__(self, mean=None, std=None): if mean == None: self.mean = [0.485, 0.456, 0.406] else: self.mean = mean if std == None: self.std = [0.229, 0.224, 0.225] else: self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor class AspectRatioBasedSampler(Sampler): def __init__(self, data_source, batch_size, drop_last): self.data_source = data_source self.batch_size = batch_size self.drop_last = drop_last self.groups = self.group_images() def __iter__(self): random.shuffle(self.groups) for group in self.groups: yield group def __len__(self): if self.drop_last: return len(self.data_source) // self.batch_size else: return (len(self.data_source) + self.batch_size - 1) // self.batch_size def group_images(self): # determine the order of the images order = list(range(len(self.data_source))) order.sort(key=lambda x: self.data_source.image_aspect_ratio(x)) # divide into groups, one group = one batch return [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in range(0, len(order), self.batch_size)]