Spaces:
Sleeping
Sleeping
from db import fetch_db_rows_as_dicts | |
import google.generativeai as genai | |
import json | |
import os | |
import pandas as pd | |
GOOGLE_API_KEY= os.getenv('GEMINI_API_KEY') | |
genai.configure(api_key=GOOGLE_API_KEY) | |
model = genai.GenerativeModel(model_name = "gemini-pro") | |
def load_json_from_string(json_string): | |
try: | |
data = json.loads(json_string) | |
return data | |
except json.JSONDecodeError as e: | |
print(f"Error decoding JSON: {e}") | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
def concatenate_keys(keys): | |
concatenated_string = "" | |
for i, d in enumerate(keys, start=1): | |
concatenated_string += f"{i}. {d}" | |
print('##########################') | |
print(concatenated_string.strip()) | |
return concatenated_string.strip() | |
def transform_to_dict_of_dicts(columns, rows): | |
# Initialize the result dictionary | |
result = {} | |
# Iterate over each row | |
for row in rows: | |
#print(dict(row)) | |
# The first element of the row is the key for the outer dictionary | |
outer_key = row[0].strip() | |
# Initialize the inner dictionary | |
inner_dict = {} | |
# Iterate over the rest of the elements in the row | |
for i, value in enumerate(row[1:], start=1): | |
# The corresponding column name is the key for the inner dictionary | |
inner_key = columns[i].strip() | |
# Add the key-value pair to the inner dictionary | |
inner_dict[inner_key] = value | |
# Add the inner dictionary to the result dictionary with the outer key | |
result[outer_key] = inner_dict | |
return result | |
def transform_topologies_to_dict(columns, rows): | |
# Initialize the result dictionary | |
result = {} | |
# Iterate over each row | |
for row in rows: | |
#print(dict(row)) | |
# The first element of the row is the key for the outer dictionary | |
outer_key = row[0].strip() | |
# Initialize the inner dictionary | |
inner_dict = {} | |
# Iterate over the rest of the elements in the row | |
for i, value in enumerate(row[1:], start=1): | |
# The corresponding column name is the key for the inner dictionary | |
inner_key = columns[i].strip() | |
# Add the key-value pair to the inner dictionary | |
inner_dict[inner_key] = value | |
# Add the inner dictionary to the result dictionary with the outer key | |
result[outer_key] = inner_dict | |
return result | |
def findTop3MoneyNeeds(proposition): | |
moneyNeeds, rows = fetch_db_rows_as_dicts('data.sqlite', 'money_needs') | |
moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows) | |
#print(list(moneyNeedsDict.keys())) | |
needs = findTop3Needs(proposition, list(moneyNeedsDict.keys())) | |
needDictIndexes = [] | |
for need in needs: | |
needDictIndexes.append(moneyNeedsDict[need]) | |
#print(needDictIndexes) | |
return needs, needDictIndexes | |
def findTop3CustomerExperienceNeeds(proposition): | |
moneyNeeds, rows = fetch_db_rows_as_dicts('data.sqlite', 'customer_exp') | |
moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows) | |
#print(list(moneyNeedsDict.keys())) | |
needs = findTop3Needs(proposition, list(moneyNeedsDict.keys())) | |
needDictIndexes = [] | |
for need in needs: | |
needDictIndexes.append(moneyNeedsDict[need]) | |
#print(needDictIndexes) | |
return needs, needDictIndexes | |
def findTop3SustainabilityNeeds(proposition): | |
print(" Proposition sustain = {}".format(proposition)) | |
allNeeds, rows = fetch_db_rows_as_dicts('data.sqlite', 'sustainability') | |
needsDict = transform_to_dict_of_dicts(allNeeds, rows) | |
needs = findTop3Needs(proposition, list(needsDict.keys())) | |
needDictIndexes = [] | |
print(list(needsDict.keys())) | |
for need in needs: | |
needDictIndexes.append(needsDict[need]) | |
print(needDictIndexes) | |
return needs, needDictIndexes | |
def findTop3Needs(proposition, needs): | |
needsString = concatenate_keys(needs) | |
prompt = '''You have this comma separated listed needs of customers | |
{} | |
Now given a proposition | |
"{}" | |
Find the best 3 strings out of the above numbered list which best matches this proposition. Return in output only the number next to the matching string strictly only in json under a list called matches | |
''' | |
needsPrompt = prompt.format(needsString, proposition) | |
print(needsPrompt) | |
response = model.generate_content([needsPrompt]) | |
output = response.text | |
output = output.replace('```json', '') | |
output = output.replace('```', '') | |
obj = load_json_from_string(output) | |
print(obj) | |
needsIndexes = [needs[int(idx)-1] for idx in obj['matches']] | |
return needsIndexes #obj['matches'] | |
def findTop3Topologies(proposition, demographic): | |
topologies = pd.read_csv('topologies_desc.csv', encoding = "ISO-8859-1") | |
topologies = topologies.dropna(axis=1, how='all') | |
topologyAttributes = topologies['Column1'] | |
topologyNames = list(topologies.columns) | |
topologyNames.remove('Column1') | |
#print(" topologyNames = {} ", topologyNames) | |
topologyDetails = {} | |
for name in topologyNames: | |
topologyDetails[name] = {} | |
for attribute in topologyAttributes: | |
topologyDetails[name][attribute] = topologies[name][pd.Index(topologies['Column1']).get_loc(attribute)] | |
prompt = '''You have these listed topology names of a demographic in comma separated values below | |
{} | |
Now for each of these above topologies here are the details | |
{} | |
Now given a proposition details below | |
{} | |
and given a demographic details below | |
{} | |
Find the best 3 common strings out of the topology names which matches the proposition and the demographic the most. Return output strictly only in json under a list called matches | |
''' | |
topologyPrompt = prompt.format(", ".join(topologyNames), str(topologyDetails), proposition, demographic) | |
response = model.generate_content([topologyPrompt]) | |
output = response.text | |
output = output.replace('```json', '') | |
output = output.replace('```', '') | |
obj = load_json_from_string(output) | |
print(obj) | |
return obj['matches'], topologyDetails | |
# def findTop3Needs(proposition, moneyNeeds): | |
# moneyNeedsString = concatenate_keys(moneyNeeds) | |
# print(moneyNeedsString) | |
# prompt = '''You have these listed needs of customers | |
# {} | |
# Now given a proposition | |
# "{}" | |
# Find the best 3 strings out of the list which matches this proposition. Return output strictly only in json under a list called matches | |
# ''' | |
# moneyNeedsPrompt = prompt.format(moneyNeedsString, proposition) | |
# response = model.generate_content([moneyNeedsPrompt]) | |
# output = response.text | |
# output = output.replace('```json', '') | |
# output = output.replace('```', '') | |
# obj = load_json_from_string(output) | |
# print(obj) | |
# return obj['matches'] | |
# findTop3Topologies('We have a product for family people giving them discounts and low interest loans for home appliances. They can pay us back in small instalments over the course of 4 years', | |
# 'CharlesTown city people are young families people mostly with a population of 20000. Out of this 65% are between the age of 30-45. Most of them have kids aged between 0-15') | |
#findTop3SustainabilityNeeds('We support Home appliances are all electric and use no fuel based energy') | |
#We provide a credit card which gives 10% discount on purchasing home appliances and also provides low interest rates based loans | |
#customer need - We provide our customer with utmost comfort and at home service | |
# subscriber take out | |
# 250 and below with a negative factor of 2.0 | |
# 260 with a negative factor of 1.8 | |
# 270 with a negative factor of 1.6 | |
# 280 with a negative factor of 1.0 | |
# 300 with a factor of 1 | |
# 310 with a factor of 1.2 | |
# 320 with a factor of 1.4 | |
# 340 with a factor or 1.5 | |
# 360+ with a factor of 2.0 | |