import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=200)
# Create a banner using Markdown
st.markdown(
"""
Red Octopus
Welcome to the Proposition Management Tool
""",
unsafe_allow_html=True
)
selectedCity = st.selectbox("Please select the City and the Bank Product for Your Proposition.", ["CharlesTown", "Limburg"])
selectedProduct = st.selectbox("Please select the Product", ["Current", "Mortage", "Credit Card", "Crypto"])
userProposal = st.text_input("Enter your Proposition for Select City and Product")
submit_button = st.button("Submit")
if submit_button:
st.write("You clicked the Submit button!")
st.write("Entered text:", userProposal)
result = pipe(f"[INST] {userProposal} [/INST]")
st.write(result)