Spaces:
Runtime error
Runtime error
pookiefoof
commited on
Commit
•
ff0340e
1
Parent(s):
eaa1b39
Update hf
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 2D_Stage/configs/infer.yaml +24 -0
- 2D_Stage/input.png +0 -0
- 2D_Stage/material/examples/1.png +0 -0
- 2D_Stage/material/examples/2.png +0 -0
- 2D_Stage/material/examples/3.png +0 -0
- 2D_Stage/material/examples/4.png +0 -0
- 2D_Stage/material/examples/5.png +0 -0
- 2D_Stage/material/examples/6.png +0 -0
- 2D_Stage/material/examples/7.png +0 -0
- 2D_Stage/material/examples/8.png +0 -0
- 2D_Stage/material/pose.json +38 -0
- 2D_Stage/material/pose0.png +0 -0
- 2D_Stage/material/pose1.png +0 -0
- 2D_Stage/material/pose2.png +0 -0
- 2D_Stage/material/pose3.png +0 -0
- 2D_Stage/tuneavideo/__pycache__/util.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/PoseGuider.py +59 -0
- 2D_Stage/tuneavideo/models/__pycache__/PoseGuider.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/__pycache__/refunet.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/__pycache__/resnet.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/__pycache__/transformer_mv2d.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/__pycache__/unet.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/__pycache__/unet_blocks.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/__pycache__/unet_mv2d_blocks.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/__pycache__/unet_mv2d_condition.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/__pycache__/unet_mv2d_ref.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/models/attention.py +344 -0
- 2D_Stage/tuneavideo/models/imageproj.py +118 -0
- 2D_Stage/tuneavideo/models/refunet.py +125 -0
- 2D_Stage/tuneavideo/models/resnet.py +210 -0
- 2D_Stage/tuneavideo/models/transformer_mv2d.py +1010 -0
- 2D_Stage/tuneavideo/models/unet.py +497 -0
- 2D_Stage/tuneavideo/models/unet_blocks.py +596 -0
- 2D_Stage/tuneavideo/models/unet_mv2d_blocks.py +926 -0
- 2D_Stage/tuneavideo/models/unet_mv2d_condition.py +1509 -0
- 2D_Stage/tuneavideo/models/unet_mv2d_ref.py +1570 -0
- 2D_Stage/tuneavideo/pipelines/__pycache__/pipeline_tuneavideo.cpython-310.pyc +0 -0
- 2D_Stage/tuneavideo/pipelines/pipeline_tuneavideo.py +585 -0
- 2D_Stage/tuneavideo/util.py +128 -0
- 2D_Stage/webui.py +323 -0
- 3D_Stage/__pycache__/refine.cpython-310.pyc +0 -0
- 3D_Stage/configs/infer.yaml +104 -0
- 3D_Stage/load/tets/128_tets.npz +3 -0
- 3D_Stage/load/tets/256_tets.npz +3 -0
- 3D_Stage/load/tets/32_tets.npz +3 -0
- 3D_Stage/load/tets/64_tets.npz +3 -0
- 3D_Stage/load/tets/generate_tets.py +58 -0
- 3D_Stage/lrm/__init__.py +29 -0
- 3D_Stage/lrm/__pycache__/__init__.cpython-310.pyc +0 -0
- 3D_Stage/lrm/models/__init__.py +0 -0
2D_Stage/configs/infer.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: "stabilityai/stable-diffusion-2-1"
|
2 |
+
image_encoder_path: "./models/image_encoder"
|
3 |
+
ckpt_dir: "./models/checkpoint"
|
4 |
+
|
5 |
+
validation:
|
6 |
+
guidance_scale: 5.0
|
7 |
+
use_inv_latent: False
|
8 |
+
video_length: 4
|
9 |
+
|
10 |
+
use_pose_guider: True
|
11 |
+
use_noise: False
|
12 |
+
use_shifted_noise: False
|
13 |
+
unet_condition_type: image
|
14 |
+
|
15 |
+
unet_from_pretrained_kwargs:
|
16 |
+
camera_embedding_type: 'e_de_da_sincos'
|
17 |
+
projection_class_embeddings_input_dim: 10 # modify
|
18 |
+
joint_attention: false # modify
|
19 |
+
num_views: 4
|
20 |
+
sample_size: 96
|
21 |
+
zero_init_conv_in: false
|
22 |
+
zero_init_camera_projection: false
|
23 |
+
in_channels: 4
|
24 |
+
use_safetensors: true
|
2D_Stage/input.png
ADDED
2D_Stage/material/examples/1.png
ADDED
2D_Stage/material/examples/2.png
ADDED
2D_Stage/material/examples/3.png
ADDED
2D_Stage/material/examples/4.png
ADDED
2D_Stage/material/examples/5.png
ADDED
2D_Stage/material/examples/6.png
ADDED
2D_Stage/material/examples/7.png
ADDED
2D_Stage/material/examples/8.png
ADDED
2D_Stage/material/pose.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
[
|
4 |
+
0, 0, -1, 0,
|
5 |
+
0, 1, 0, 0,
|
6 |
+
1, 0, 0, 0,
|
7 |
+
1.5, 0, 0, 1
|
8 |
+
],
|
9 |
+
"pose0.png"
|
10 |
+
],
|
11 |
+
[
|
12 |
+
[
|
13 |
+
0, 0, 1, 0,
|
14 |
+
0, 1, 0, 0,
|
15 |
+
-1, 0, 0, 0,
|
16 |
+
-1.5, 0, 0, 1
|
17 |
+
],
|
18 |
+
"pose1.png"
|
19 |
+
],
|
20 |
+
[
|
21 |
+
[
|
22 |
+
0, 0, 1, 0,
|
23 |
+
0, 1, 0, 0,
|
24 |
+
-1, 0, 0, 0,
|
25 |
+
-1.5, 0, 0, 1
|
26 |
+
],
|
27 |
+
"pose2.png"
|
28 |
+
],
|
29 |
+
[
|
30 |
+
[
|
31 |
+
-1, 0, 0, 0,
|
32 |
+
0, 1, 0, 0,
|
33 |
+
0, 0, -1, 0,
|
34 |
+
0, 0, -1.5, 1
|
35 |
+
],
|
36 |
+
"pose3.png"
|
37 |
+
]
|
38 |
+
]
|
2D_Stage/material/pose0.png
ADDED
2D_Stage/material/pose1.png
ADDED
2D_Stage/material/pose2.png
ADDED
2D_Stage/material/pose3.png
ADDED
2D_Stage/tuneavideo/__pycache__/util.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
2D_Stage/tuneavideo/models/PoseGuider.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.init as init
|
5 |
+
from einops import rearrange
|
6 |
+
|
7 |
+
class PoseGuider(nn.Module):
|
8 |
+
def __init__(self, noise_latent_channels=4):
|
9 |
+
super(PoseGuider, self).__init__()
|
10 |
+
|
11 |
+
self.conv_layers = nn.Sequential(
|
12 |
+
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=4, stride=2, padding=1),
|
13 |
+
nn.ReLU(),
|
14 |
+
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=2, padding=1),
|
15 |
+
nn.ReLU(),
|
16 |
+
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2, padding=1),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
|
19 |
+
nn.ReLU()
|
20 |
+
)
|
21 |
+
|
22 |
+
# Final projection layer
|
23 |
+
self.final_proj = nn.Conv2d(in_channels=128, out_channels=noise_latent_channels, kernel_size=1)
|
24 |
+
|
25 |
+
# Initialize layers
|
26 |
+
self._initialize_weights()
|
27 |
+
|
28 |
+
def _initialize_weights(self):
|
29 |
+
# Initialize weights with Gaussian distribution and zero out the final layer
|
30 |
+
for m in self.conv_layers:
|
31 |
+
if isinstance(m, nn.Conv2d):
|
32 |
+
init.normal_(m.weight, mean=0.0, std=0.02)
|
33 |
+
if m.bias is not None:
|
34 |
+
init.zeros_(m.bias)
|
35 |
+
|
36 |
+
init.zeros_(self.final_proj.weight)
|
37 |
+
if self.final_proj.bias is not None:
|
38 |
+
init.zeros_(self.final_proj.bias)
|
39 |
+
|
40 |
+
def forward(self, pose_image):
|
41 |
+
x = self.conv_layers(pose_image)
|
42 |
+
x = self.final_proj(x)
|
43 |
+
|
44 |
+
return x
|
45 |
+
|
46 |
+
@classmethod
|
47 |
+
def from_pretrained(pretrained_model_path):
|
48 |
+
if not os.path.exists(pretrained_model_path):
|
49 |
+
print(f"There is no model file in {pretrained_model_path}")
|
50 |
+
print(f"loaded PoseGuider's pretrained weights from {pretrained_model_path} ...")
|
51 |
+
|
52 |
+
state_dict = torch.load(pretrained_model_path, map_location="cpu")
|
53 |
+
model = PoseGuider(noise_latent_channels=4)
|
54 |
+
m, u = model.load_state_dict(state_dict, strict=False)
|
55 |
+
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
56 |
+
params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
|
57 |
+
print(f"### PoseGuider's Parameters: {sum(params) / 1e6} M")
|
58 |
+
|
59 |
+
return model
|
2D_Stage/tuneavideo/models/__pycache__/PoseGuider.cpython-310.pyc
ADDED
Binary file (2.41 kB). View file
|
|
2D_Stage/tuneavideo/models/__pycache__/refunet.cpython-310.pyc
ADDED
Binary file (4.05 kB). View file
|
|
2D_Stage/tuneavideo/models/__pycache__/resnet.cpython-310.pyc
ADDED
Binary file (5.13 kB). View file
|
|
2D_Stage/tuneavideo/models/__pycache__/transformer_mv2d.cpython-310.pyc
ADDED
Binary file (23 kB). View file
|
|
2D_Stage/tuneavideo/models/__pycache__/unet.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
2D_Stage/tuneavideo/models/__pycache__/unet_blocks.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
2D_Stage/tuneavideo/models/__pycache__/unet_mv2d_blocks.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
2D_Stage/tuneavideo/models/__pycache__/unet_mv2d_condition.cpython-310.pyc
ADDED
Binary file (45.7 kB). View file
|
|
2D_Stage/tuneavideo/models/__pycache__/unet_mv2d_ref.cpython-310.pyc
ADDED
Binary file (48.1 kB). View file
|
|
2D_Stage/tuneavideo/models/attention.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers import ModelMixin
|
12 |
+
from diffusers.utils import BaseOutput
|
13 |
+
from diffusers.utils.import_utils import is_xformers_available
|
14 |
+
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
|
15 |
+
|
16 |
+
from einops import rearrange, repeat
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class Transformer3DModelOutput(BaseOutput):
|
21 |
+
sample: torch.FloatTensor
|
22 |
+
|
23 |
+
|
24 |
+
if is_xformers_available():
|
25 |
+
import xformers
|
26 |
+
import xformers.ops
|
27 |
+
else:
|
28 |
+
xformers = None
|
29 |
+
|
30 |
+
|
31 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
32 |
+
@register_to_config
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
num_attention_heads: int = 16,
|
36 |
+
attention_head_dim: int = 88,
|
37 |
+
in_channels: Optional[int] = None,
|
38 |
+
num_layers: int = 1,
|
39 |
+
dropout: float = 0.0,
|
40 |
+
norm_num_groups: int = 32,
|
41 |
+
cross_attention_dim: Optional[int] = None,
|
42 |
+
attention_bias: bool = False,
|
43 |
+
activation_fn: str = "geglu",
|
44 |
+
num_embeds_ada_norm: Optional[int] = None,
|
45 |
+
use_linear_projection: bool = False,
|
46 |
+
only_cross_attention: bool = False,
|
47 |
+
upcast_attention: bool = False,
|
48 |
+
use_attn_temp: bool = False,
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.use_linear_projection = use_linear_projection
|
52 |
+
self.num_attention_heads = num_attention_heads
|
53 |
+
self.attention_head_dim = attention_head_dim
|
54 |
+
inner_dim = num_attention_heads * attention_head_dim
|
55 |
+
|
56 |
+
# Define input layers
|
57 |
+
self.in_channels = in_channels
|
58 |
+
|
59 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
60 |
+
if use_linear_projection:
|
61 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
62 |
+
else:
|
63 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
64 |
+
|
65 |
+
# Define transformers blocks
|
66 |
+
self.transformer_blocks = nn.ModuleList(
|
67 |
+
[
|
68 |
+
BasicTransformerBlock(
|
69 |
+
inner_dim,
|
70 |
+
num_attention_heads,
|
71 |
+
attention_head_dim,
|
72 |
+
dropout=dropout,
|
73 |
+
cross_attention_dim=cross_attention_dim,
|
74 |
+
activation_fn=activation_fn,
|
75 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
76 |
+
attention_bias=attention_bias,
|
77 |
+
only_cross_attention=only_cross_attention,
|
78 |
+
upcast_attention=upcast_attention,
|
79 |
+
use_attn_temp = use_attn_temp,
|
80 |
+
)
|
81 |
+
for d in range(num_layers)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
# 4. Define output layers
|
86 |
+
if use_linear_projection:
|
87 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
88 |
+
else:
|
89 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
90 |
+
|
91 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
92 |
+
# Input
|
93 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
94 |
+
video_length = hidden_states.shape[2]
|
95 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
96 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
97 |
+
|
98 |
+
batch, channel, height, weight = hidden_states.shape
|
99 |
+
residual = hidden_states
|
100 |
+
|
101 |
+
hidden_states = self.norm(hidden_states)
|
102 |
+
if not self.use_linear_projection:
|
103 |
+
hidden_states = self.proj_in(hidden_states)
|
104 |
+
inner_dim = hidden_states.shape[1]
|
105 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
106 |
+
else:
|
107 |
+
inner_dim = hidden_states.shape[1]
|
108 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
109 |
+
hidden_states = self.proj_in(hidden_states)
|
110 |
+
|
111 |
+
# Blocks
|
112 |
+
for block in self.transformer_blocks:
|
113 |
+
hidden_states = block(
|
114 |
+
hidden_states,
|
115 |
+
encoder_hidden_states=encoder_hidden_states,
|
116 |
+
timestep=timestep,
|
117 |
+
video_length=video_length
|
118 |
+
)
|
119 |
+
|
120 |
+
# Output
|
121 |
+
if not self.use_linear_projection:
|
122 |
+
hidden_states = (
|
123 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
124 |
+
)
|
125 |
+
hidden_states = self.proj_out(hidden_states)
|
126 |
+
else:
|
127 |
+
hidden_states = self.proj_out(hidden_states)
|
128 |
+
hidden_states = (
|
129 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
130 |
+
)
|
131 |
+
|
132 |
+
output = hidden_states + residual
|
133 |
+
|
134 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
135 |
+
if not return_dict:
|
136 |
+
return (output,)
|
137 |
+
|
138 |
+
return Transformer3DModelOutput(sample=output)
|
139 |
+
|
140 |
+
|
141 |
+
class BasicTransformerBlock(nn.Module):
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
dim: int,
|
145 |
+
num_attention_heads: int,
|
146 |
+
attention_head_dim: int,
|
147 |
+
dropout=0.0,
|
148 |
+
cross_attention_dim: Optional[int] = None,
|
149 |
+
activation_fn: str = "geglu",
|
150 |
+
num_embeds_ada_norm: Optional[int] = None,
|
151 |
+
attention_bias: bool = False,
|
152 |
+
only_cross_attention: bool = False,
|
153 |
+
upcast_attention: bool = False,
|
154 |
+
use_attn_temp: bool = False
|
155 |
+
):
|
156 |
+
super().__init__()
|
157 |
+
self.only_cross_attention = only_cross_attention
|
158 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
159 |
+
self.use_attn_temp = use_attn_temp
|
160 |
+
# SC-Attn
|
161 |
+
self.attn1 = SparseCausalAttention(
|
162 |
+
query_dim=dim,
|
163 |
+
heads=num_attention_heads,
|
164 |
+
dim_head=attention_head_dim,
|
165 |
+
dropout=dropout,
|
166 |
+
bias=attention_bias,
|
167 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
168 |
+
upcast_attention=upcast_attention,
|
169 |
+
)
|
170 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
171 |
+
|
172 |
+
# Cross-Attn
|
173 |
+
if cross_attention_dim is not None:
|
174 |
+
self.attn2 = CrossAttention(
|
175 |
+
query_dim=dim,
|
176 |
+
cross_attention_dim=cross_attention_dim,
|
177 |
+
heads=num_attention_heads,
|
178 |
+
dim_head=attention_head_dim,
|
179 |
+
dropout=dropout,
|
180 |
+
bias=attention_bias,
|
181 |
+
upcast_attention=upcast_attention,
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
self.attn2 = None
|
185 |
+
|
186 |
+
if cross_attention_dim is not None:
|
187 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
188 |
+
else:
|
189 |
+
self.norm2 = None
|
190 |
+
|
191 |
+
# Feed-forward
|
192 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
193 |
+
self.norm3 = nn.LayerNorm(dim)
|
194 |
+
|
195 |
+
# Temp-Attn
|
196 |
+
if self.use_attn_temp:
|
197 |
+
self.attn_temp = CrossAttention(
|
198 |
+
query_dim=dim,
|
199 |
+
heads=num_attention_heads,
|
200 |
+
dim_head=attention_head_dim,
|
201 |
+
dropout=dropout,
|
202 |
+
bias=attention_bias,
|
203 |
+
upcast_attention=upcast_attention,
|
204 |
+
)
|
205 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
206 |
+
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
207 |
+
|
208 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
209 |
+
if not is_xformers_available():
|
210 |
+
print("Here is how to install it")
|
211 |
+
raise ModuleNotFoundError(
|
212 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
213 |
+
" xformers",
|
214 |
+
name="xformers",
|
215 |
+
)
|
216 |
+
elif not torch.cuda.is_available():
|
217 |
+
raise ValueError(
|
218 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
219 |
+
" available for GPU "
|
220 |
+
)
|
221 |
+
else:
|
222 |
+
try:
|
223 |
+
# Make sure we can run the memory efficient attention
|
224 |
+
_ = xformers.ops.memory_efficient_attention(
|
225 |
+
torch.randn((1, 2, 40), device="cuda"),
|
226 |
+
torch.randn((1, 2, 40), device="cuda"),
|
227 |
+
torch.randn((1, 2, 40), device="cuda"),
|
228 |
+
)
|
229 |
+
except Exception as e:
|
230 |
+
raise e
|
231 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
232 |
+
if self.attn2 is not None:
|
233 |
+
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
234 |
+
#self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
235 |
+
|
236 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
|
237 |
+
# SparseCausal-Attention
|
238 |
+
norm_hidden_states = (
|
239 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
240 |
+
)
|
241 |
+
|
242 |
+
if self.only_cross_attention:
|
243 |
+
hidden_states = (
|
244 |
+
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
245 |
+
)
|
246 |
+
else:
|
247 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
248 |
+
|
249 |
+
if self.attn2 is not None:
|
250 |
+
# Cross-Attention
|
251 |
+
norm_hidden_states = (
|
252 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
253 |
+
)
|
254 |
+
hidden_states = (
|
255 |
+
self.attn2(
|
256 |
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
257 |
+
)
|
258 |
+
+ hidden_states
|
259 |
+
)
|
260 |
+
|
261 |
+
# Feed-forward
|
262 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
263 |
+
|
264 |
+
# Temporal-Attention
|
265 |
+
if self.use_attn_temp:
|
266 |
+
d = hidden_states.shape[1]
|
267 |
+
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
268 |
+
norm_hidden_states = (
|
269 |
+
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
|
270 |
+
)
|
271 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
272 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
273 |
+
|
274 |
+
return hidden_states
|
275 |
+
|
276 |
+
|
277 |
+
class SparseCausalAttention(CrossAttention):
|
278 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, use_full_attn=True):
|
279 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
280 |
+
|
281 |
+
encoder_hidden_states = encoder_hidden_states
|
282 |
+
|
283 |
+
if self.group_norm is not None:
|
284 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
285 |
+
|
286 |
+
query = self.to_q(hidden_states)
|
287 |
+
# query = rearrange(query, "(b f) d c -> b (f d) c", f=video_length)
|
288 |
+
dim = query.shape[-1]
|
289 |
+
query = self.reshape_heads_to_batch_dim(query)
|
290 |
+
|
291 |
+
if self.added_kv_proj_dim is not None:
|
292 |
+
raise NotImplementedError
|
293 |
+
|
294 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
295 |
+
key = self.to_k(encoder_hidden_states)
|
296 |
+
value = self.to_v(encoder_hidden_states)
|
297 |
+
|
298 |
+
former_frame_index = torch.arange(video_length) - 1
|
299 |
+
former_frame_index[0] = 0
|
300 |
+
|
301 |
+
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
|
302 |
+
if not use_full_attn:
|
303 |
+
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
|
304 |
+
else:
|
305 |
+
# key = torch.cat([key[:, [0] * video_length], key[:, [1] * video_length], key[:, [2] * video_length], key[:, [3] * video_length]], dim=2)
|
306 |
+
key_video_length = [key[:, [i] * video_length] for i in range(video_length)]
|
307 |
+
key = torch.cat(key_video_length, dim=2)
|
308 |
+
key = rearrange(key, "b f d c -> (b f) d c")
|
309 |
+
|
310 |
+
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
|
311 |
+
if not use_full_attn:
|
312 |
+
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
|
313 |
+
else:
|
314 |
+
# value = torch.cat([value[:, [0] * video_length], value[:, [1] * video_length], value[:, [2] * video_length], value[:, [3] * video_length]], dim=2)
|
315 |
+
value_video_length = [value[:, [i] * video_length] for i in range(video_length)]
|
316 |
+
value = torch.cat(value_video_length, dim=2)
|
317 |
+
value = rearrange(value, "b f d c -> (b f) d c")
|
318 |
+
|
319 |
+
key = self.reshape_heads_to_batch_dim(key)
|
320 |
+
value = self.reshape_heads_to_batch_dim(value)
|
321 |
+
|
322 |
+
if attention_mask is not None:
|
323 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
324 |
+
target_length = query.shape[1]
|
325 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
326 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
327 |
+
|
328 |
+
# attention, what we cannot get enough of
|
329 |
+
if self._use_memory_efficient_attention_xformers:
|
330 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
331 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
332 |
+
hidden_states = hidden_states.to(query.dtype)
|
333 |
+
else:
|
334 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
335 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
336 |
+
else:
|
337 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
338 |
+
|
339 |
+
# linear proj
|
340 |
+
hidden_states = self.to_out[0](hidden_states)
|
341 |
+
|
342 |
+
# dropout
|
343 |
+
hidden_states = self.to_out[1](hidden_states)
|
344 |
+
return hidden_states
|
2D_Stage/tuneavideo/models/imageproj.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
# FFN
|
8 |
+
def FeedForward(dim, mult=4):
|
9 |
+
inner_dim = int(dim * mult)
|
10 |
+
return nn.Sequential(
|
11 |
+
nn.LayerNorm(dim),
|
12 |
+
nn.Linear(dim, inner_dim, bias=False),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.Linear(inner_dim, dim, bias=False),
|
15 |
+
)
|
16 |
+
|
17 |
+
def reshape_tensor(x, heads):
|
18 |
+
bs, length, width = x.shape
|
19 |
+
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
20 |
+
x = x.view(bs, length, heads, -1)
|
21 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
22 |
+
x = x.transpose(1, 2)
|
23 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
24 |
+
x = x.reshape(bs, heads, length, -1)
|
25 |
+
return x
|
26 |
+
|
27 |
+
|
28 |
+
class PerceiverAttention(nn.Module):
|
29 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
30 |
+
super().__init__()
|
31 |
+
self.scale = dim_head**-0.5
|
32 |
+
self.dim_head = dim_head
|
33 |
+
self.heads = heads
|
34 |
+
inner_dim = dim_head * heads
|
35 |
+
|
36 |
+
self.norm1 = nn.LayerNorm(dim)
|
37 |
+
self.norm2 = nn.LayerNorm(dim)
|
38 |
+
|
39 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
40 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
41 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
42 |
+
|
43 |
+
|
44 |
+
def forward(self, x, latents):
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
x (torch.Tensor): image features
|
48 |
+
shape (b, n1, D)
|
49 |
+
latent (torch.Tensor): latent features
|
50 |
+
shape (b, n2, D)
|
51 |
+
"""
|
52 |
+
x = self.norm1(x)
|
53 |
+
latents = self.norm2(latents)
|
54 |
+
|
55 |
+
b, l, _ = latents.shape
|
56 |
+
|
57 |
+
q = self.to_q(latents)
|
58 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
59 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
60 |
+
|
61 |
+
q = reshape_tensor(q, self.heads)
|
62 |
+
k = reshape_tensor(k, self.heads)
|
63 |
+
v = reshape_tensor(v, self.heads)
|
64 |
+
|
65 |
+
# attention
|
66 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
67 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
68 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
69 |
+
out = weight @ v
|
70 |
+
|
71 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
72 |
+
|
73 |
+
return self.to_out(out)
|
74 |
+
|
75 |
+
class Resampler(nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
dim=1024,
|
79 |
+
depth=8,
|
80 |
+
dim_head=64,
|
81 |
+
heads=16,
|
82 |
+
num_queries=8,
|
83 |
+
embedding_dim=768,
|
84 |
+
output_dim=1024,
|
85 |
+
ff_mult=4,
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
90 |
+
|
91 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
92 |
+
|
93 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
94 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
95 |
+
|
96 |
+
self.layers = nn.ModuleList([])
|
97 |
+
for _ in range(depth):
|
98 |
+
self.layers.append(
|
99 |
+
nn.ModuleList(
|
100 |
+
[
|
101 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
102 |
+
FeedForward(dim=dim, mult=ff_mult),
|
103 |
+
]
|
104 |
+
)
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
|
109 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
110 |
+
|
111 |
+
x = self.proj_in(x)
|
112 |
+
|
113 |
+
for attn, ff in self.layers:
|
114 |
+
latents = attn(x, latents) + latents
|
115 |
+
latents = ff(latents) + latents
|
116 |
+
|
117 |
+
latents = self.proj_out(latents)
|
118 |
+
return self.norm_out(latents)
|
2D_Stage/tuneavideo/models/refunet.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
from diffusers.utils.import_utils import is_xformers_available
|
5 |
+
from tuneavideo.models.transformer_mv2d import XFormersMVAttnProcessor, MVAttnProcessor
|
6 |
+
class ReferenceOnlyAttnProc(torch.nn.Module):
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
chained_proc,
|
10 |
+
enabled=False,
|
11 |
+
name=None
|
12 |
+
) -> None:
|
13 |
+
super().__init__()
|
14 |
+
self.enabled = enabled
|
15 |
+
self.chained_proc = chained_proc
|
16 |
+
self.name = name
|
17 |
+
|
18 |
+
def __call__(
|
19 |
+
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
20 |
+
mode="w", ref_dict: dict = None, is_cfg_guidance = False,num_views=4,
|
21 |
+
multiview_attention=True,
|
22 |
+
cross_domain_attention=False,
|
23 |
+
) -> Any:
|
24 |
+
if encoder_hidden_states is None:
|
25 |
+
encoder_hidden_states = hidden_states
|
26 |
+
# print(self.enabled)
|
27 |
+
if self.enabled:
|
28 |
+
if mode == 'w':
|
29 |
+
ref_dict[self.name] = encoder_hidden_states
|
30 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, num_views=1,
|
31 |
+
multiview_attention=False,
|
32 |
+
cross_domain_attention=False,)
|
33 |
+
elif mode == 'r':
|
34 |
+
encoder_hidden_states = rearrange(encoder_hidden_states, '(b t) d c-> b (t d) c', t=num_views)
|
35 |
+
if self.name in ref_dict:
|
36 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1).unsqueeze(1).repeat(1,num_views,1,1).flatten(0,1)
|
37 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, num_views=num_views,
|
38 |
+
multiview_attention=False,
|
39 |
+
cross_domain_attention=False,)
|
40 |
+
elif mode == 'm':
|
41 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
|
42 |
+
elif mode == 'n':
|
43 |
+
encoder_hidden_states = rearrange(encoder_hidden_states, '(b t) d c-> b (t d) c', t=num_views)
|
44 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states], dim=1).unsqueeze(1).repeat(1,num_views,1,1).flatten(0,1)
|
45 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, num_views=num_views,
|
46 |
+
multiview_attention=False,
|
47 |
+
cross_domain_attention=False,)
|
48 |
+
else:
|
49 |
+
assert False, mode
|
50 |
+
else:
|
51 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
|
52 |
+
return res
|
53 |
+
|
54 |
+
class RefOnlyNoisedUNet(torch.nn.Module):
|
55 |
+
def __init__(self, unet, train_sched, val_sched) -> None:
|
56 |
+
super().__init__()
|
57 |
+
self.unet = unet
|
58 |
+
self.train_sched = train_sched
|
59 |
+
self.val_sched = val_sched
|
60 |
+
|
61 |
+
unet_lora_attn_procs = dict()
|
62 |
+
for name, _ in unet.attn_processors.items():
|
63 |
+
if is_xformers_available():
|
64 |
+
default_attn_proc = XFormersMVAttnProcessor()
|
65 |
+
else:
|
66 |
+
default_attn_proc = MVAttnProcessor()
|
67 |
+
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
68 |
+
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name)
|
69 |
+
|
70 |
+
self.unet.set_attn_processor(unet_lora_attn_procs)
|
71 |
+
|
72 |
+
def __getattr__(self, name: str):
|
73 |
+
try:
|
74 |
+
return super().__getattr__(name)
|
75 |
+
except AttributeError:
|
76 |
+
return getattr(self.unet, name)
|
77 |
+
|
78 |
+
def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
|
79 |
+
if is_cfg_guidance:
|
80 |
+
encoder_hidden_states = encoder_hidden_states[1:]
|
81 |
+
class_labels = class_labels[1:]
|
82 |
+
self.unet(
|
83 |
+
noisy_cond_lat, timestep,
|
84 |
+
encoder_hidden_states=encoder_hidden_states,
|
85 |
+
class_labels=class_labels,
|
86 |
+
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
|
87 |
+
**kwargs
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self, sample, timestep, encoder_hidden_states, class_labels=None,
|
92 |
+
*args, cross_attention_kwargs,
|
93 |
+
down_block_res_samples=None, mid_block_res_sample=None,
|
94 |
+
**kwargs
|
95 |
+
):
|
96 |
+
cond_lat = cross_attention_kwargs['cond_lat']
|
97 |
+
is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
|
98 |
+
noise = torch.randn_like(cond_lat)
|
99 |
+
if self.training:
|
100 |
+
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
|
101 |
+
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
|
102 |
+
else:
|
103 |
+
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
|
104 |
+
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
|
105 |
+
ref_dict = {}
|
106 |
+
self.forward_cond(
|
107 |
+
noisy_cond_lat, timestep,
|
108 |
+
encoder_hidden_states, class_labels,
|
109 |
+
ref_dict, is_cfg_guidance, **kwargs
|
110 |
+
)
|
111 |
+
weight_dtype = self.unet.dtype
|
112 |
+
return self.unet(
|
113 |
+
sample, timestep,
|
114 |
+
encoder_hidden_states, *args,
|
115 |
+
class_labels=class_labels,
|
116 |
+
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
|
117 |
+
down_block_additional_residuals=[
|
118 |
+
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
|
119 |
+
] if down_block_res_samples is not None else None,
|
120 |
+
mid_block_additional_residual=(
|
121 |
+
mid_block_res_sample.to(dtype=weight_dtype)
|
122 |
+
if mid_block_res_sample is not None else None
|
123 |
+
),
|
124 |
+
**kwargs
|
125 |
+
)
|
2D_Stage/tuneavideo/models/resnet.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class InflatedConv3d(nn.Conv2d):
|
11 |
+
def forward(self, x):
|
12 |
+
video_length = x.shape[2]
|
13 |
+
|
14 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
15 |
+
x = super().forward(x)
|
16 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
17 |
+
|
18 |
+
return x
|
19 |
+
|
20 |
+
|
21 |
+
class Upsample3D(nn.Module):
|
22 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
23 |
+
super().__init__()
|
24 |
+
self.channels = channels
|
25 |
+
self.out_channels = out_channels or channels
|
26 |
+
self.use_conv = use_conv
|
27 |
+
self.use_conv_transpose = use_conv_transpose
|
28 |
+
self.name = name
|
29 |
+
|
30 |
+
conv = None
|
31 |
+
if use_conv_transpose:
|
32 |
+
raise NotImplementedError
|
33 |
+
elif use_conv:
|
34 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
35 |
+
|
36 |
+
if name == "conv":
|
37 |
+
self.conv = conv
|
38 |
+
else:
|
39 |
+
self.Conv2d_0 = conv
|
40 |
+
|
41 |
+
def forward(self, hidden_states, output_size=None):
|
42 |
+
assert hidden_states.shape[1] == self.channels
|
43 |
+
|
44 |
+
if self.use_conv_transpose:
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
48 |
+
dtype = hidden_states.dtype
|
49 |
+
if dtype == torch.bfloat16:
|
50 |
+
hidden_states = hidden_states.to(torch.float32)
|
51 |
+
|
52 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
53 |
+
if hidden_states.shape[0] >= 64:
|
54 |
+
hidden_states = hidden_states.contiguous()
|
55 |
+
|
56 |
+
# if `output_size` is passed we force the interpolation output
|
57 |
+
# size and do not make use of `scale_factor=2`
|
58 |
+
if output_size is None:
|
59 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
60 |
+
else:
|
61 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
62 |
+
|
63 |
+
# If the input is bfloat16, we cast back to bfloat16
|
64 |
+
if dtype == torch.bfloat16:
|
65 |
+
hidden_states = hidden_states.to(dtype)
|
66 |
+
|
67 |
+
if self.use_conv:
|
68 |
+
if self.name == "conv":
|
69 |
+
hidden_states = self.conv(hidden_states)
|
70 |
+
else:
|
71 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
72 |
+
|
73 |
+
return hidden_states
|
74 |
+
|
75 |
+
|
76 |
+
class Downsample3D(nn.Module):
|
77 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
78 |
+
super().__init__()
|
79 |
+
self.channels = channels
|
80 |
+
self.out_channels = out_channels or channels
|
81 |
+
self.use_conv = use_conv
|
82 |
+
self.padding = padding
|
83 |
+
stride = 2
|
84 |
+
self.name = name
|
85 |
+
|
86 |
+
if use_conv:
|
87 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
88 |
+
else:
|
89 |
+
raise NotImplementedError
|
90 |
+
|
91 |
+
if name == "conv":
|
92 |
+
self.Conv2d_0 = conv
|
93 |
+
self.conv = conv
|
94 |
+
elif name == "Conv2d_0":
|
95 |
+
self.conv = conv
|
96 |
+
else:
|
97 |
+
self.conv = conv
|
98 |
+
|
99 |
+
def forward(self, hidden_states):
|
100 |
+
assert hidden_states.shape[1] == self.channels
|
101 |
+
if self.use_conv and self.padding == 0:
|
102 |
+
raise NotImplementedError
|
103 |
+
|
104 |
+
assert hidden_states.shape[1] == self.channels
|
105 |
+
hidden_states = self.conv(hidden_states)
|
106 |
+
|
107 |
+
return hidden_states
|
108 |
+
|
109 |
+
|
110 |
+
class ResnetBlock3D(nn.Module):
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
*,
|
114 |
+
in_channels,
|
115 |
+
out_channels=None,
|
116 |
+
conv_shortcut=False,
|
117 |
+
dropout=0.0,
|
118 |
+
temb_channels=512,
|
119 |
+
groups=32,
|
120 |
+
groups_out=None,
|
121 |
+
pre_norm=True,
|
122 |
+
eps=1e-6,
|
123 |
+
non_linearity="swish",
|
124 |
+
time_embedding_norm="default",
|
125 |
+
output_scale_factor=1.0,
|
126 |
+
use_in_shortcut=None,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.pre_norm = pre_norm
|
130 |
+
self.pre_norm = True
|
131 |
+
self.in_channels = in_channels
|
132 |
+
out_channels = in_channels if out_channels is None else out_channels
|
133 |
+
self.out_channels = out_channels
|
134 |
+
self.use_conv_shortcut = conv_shortcut
|
135 |
+
self.time_embedding_norm = time_embedding_norm
|
136 |
+
self.output_scale_factor = output_scale_factor
|
137 |
+
|
138 |
+
if groups_out is None:
|
139 |
+
groups_out = groups
|
140 |
+
|
141 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
142 |
+
|
143 |
+
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
144 |
+
|
145 |
+
if temb_channels is not None:
|
146 |
+
if self.time_embedding_norm == "default":
|
147 |
+
time_emb_proj_out_channels = out_channels
|
148 |
+
elif self.time_embedding_norm == "scale_shift":
|
149 |
+
time_emb_proj_out_channels = out_channels * 2
|
150 |
+
else:
|
151 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
152 |
+
|
153 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
154 |
+
else:
|
155 |
+
self.time_emb_proj = None
|
156 |
+
|
157 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
158 |
+
self.dropout = torch.nn.Dropout(dropout)
|
159 |
+
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
160 |
+
|
161 |
+
if non_linearity == "swish":
|
162 |
+
self.nonlinearity = lambda x: F.silu(x)
|
163 |
+
elif non_linearity == "mish":
|
164 |
+
self.nonlinearity = Mish()
|
165 |
+
elif non_linearity == "silu":
|
166 |
+
self.nonlinearity = nn.SiLU()
|
167 |
+
|
168 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
169 |
+
|
170 |
+
self.conv_shortcut = None
|
171 |
+
if self.use_in_shortcut:
|
172 |
+
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
173 |
+
|
174 |
+
def forward(self, input_tensor, temb):
|
175 |
+
hidden_states = input_tensor
|
176 |
+
|
177 |
+
hidden_states = self.norm1(hidden_states)
|
178 |
+
hidden_states = self.nonlinearity(hidden_states)
|
179 |
+
|
180 |
+
hidden_states = self.conv1(hidden_states)
|
181 |
+
|
182 |
+
if temb is not None:
|
183 |
+
# temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
184 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, :, None, None].permute(0,2,1,3,4)
|
185 |
+
|
186 |
+
if temb is not None and self.time_embedding_norm == "default":
|
187 |
+
hidden_states = hidden_states + temb
|
188 |
+
|
189 |
+
hidden_states = self.norm2(hidden_states)
|
190 |
+
|
191 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
192 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
193 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
194 |
+
|
195 |
+
hidden_states = self.nonlinearity(hidden_states)
|
196 |
+
|
197 |
+
hidden_states = self.dropout(hidden_states)
|
198 |
+
hidden_states = self.conv2(hidden_states)
|
199 |
+
|
200 |
+
if self.conv_shortcut is not None:
|
201 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
202 |
+
|
203 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
204 |
+
|
205 |
+
return output_tensor
|
206 |
+
|
207 |
+
|
208 |
+
class Mish(torch.nn.Module):
|
209 |
+
def forward(self, hidden_states):
|
210 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
2D_Stage/tuneavideo/models/transformer_mv2d.py
ADDED
@@ -0,0 +1,1010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
try:
|
25 |
+
from diffusers.utils import maybe_allow_in_graph
|
26 |
+
except:
|
27 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
28 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
29 |
+
from diffusers.models.embeddings import PatchEmbed
|
30 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
31 |
+
from diffusers.models.modeling_utils import ModelMixin
|
32 |
+
from diffusers.utils.import_utils import is_xformers_available
|
33 |
+
|
34 |
+
from einops import rearrange
|
35 |
+
import pdb
|
36 |
+
import random
|
37 |
+
|
38 |
+
|
39 |
+
if is_xformers_available():
|
40 |
+
import xformers
|
41 |
+
import xformers.ops
|
42 |
+
else:
|
43 |
+
xformers = None
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
48 |
+
"""
|
49 |
+
The output of [`Transformer2DModel`].
|
50 |
+
|
51 |
+
Args:
|
52 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
53 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
54 |
+
distributions for the unnoised latent pixels.
|
55 |
+
"""
|
56 |
+
|
57 |
+
sample: torch.FloatTensor
|
58 |
+
|
59 |
+
|
60 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
61 |
+
"""
|
62 |
+
A 2D Transformer model for image-like data.
|
63 |
+
|
64 |
+
Parameters:
|
65 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
66 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
67 |
+
in_channels (`int`, *optional*):
|
68 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
69 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
70 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
71 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
72 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
73 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
74 |
+
num_vector_embeds (`int`, *optional*):
|
75 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
76 |
+
Includes the class for the masked latent pixel.
|
77 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
78 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
79 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
80 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
81 |
+
added to the hidden states.
|
82 |
+
|
83 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
84 |
+
attention_bias (`bool`, *optional*):
|
85 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
86 |
+
"""
|
87 |
+
|
88 |
+
@register_to_config
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
num_attention_heads: int = 16,
|
92 |
+
attention_head_dim: int = 88,
|
93 |
+
in_channels: Optional[int] = None,
|
94 |
+
out_channels: Optional[int] = None,
|
95 |
+
num_layers: int = 1,
|
96 |
+
dropout: float = 0.0,
|
97 |
+
norm_num_groups: int = 32,
|
98 |
+
cross_attention_dim: Optional[int] = None,
|
99 |
+
attention_bias: bool = False,
|
100 |
+
sample_size: Optional[int] = None,
|
101 |
+
num_vector_embeds: Optional[int] = None,
|
102 |
+
patch_size: Optional[int] = None,
|
103 |
+
activation_fn: str = "geglu",
|
104 |
+
num_embeds_ada_norm: Optional[int] = None,
|
105 |
+
use_linear_projection: bool = False,
|
106 |
+
only_cross_attention: bool = False,
|
107 |
+
upcast_attention: bool = False,
|
108 |
+
norm_type: str = "layer_norm",
|
109 |
+
norm_elementwise_affine: bool = True,
|
110 |
+
num_views: int = 1,
|
111 |
+
joint_attention: bool=False,
|
112 |
+
joint_attention_twice: bool=False,
|
113 |
+
multiview_attention: bool=True,
|
114 |
+
cross_domain_attention: bool=False
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
self.use_linear_projection = use_linear_projection
|
118 |
+
self.num_attention_heads = num_attention_heads
|
119 |
+
self.attention_head_dim = attention_head_dim
|
120 |
+
inner_dim = num_attention_heads * attention_head_dim
|
121 |
+
|
122 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
123 |
+
# Define whether input is continuous or discrete depending on configuration
|
124 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
125 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
126 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
127 |
+
|
128 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
129 |
+
deprecation_message = (
|
130 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
131 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
132 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
133 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
134 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
135 |
+
)
|
136 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
137 |
+
norm_type = "ada_norm"
|
138 |
+
|
139 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
140 |
+
raise ValueError(
|
141 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
142 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
143 |
+
)
|
144 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
145 |
+
raise ValueError(
|
146 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
147 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
148 |
+
)
|
149 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
150 |
+
raise ValueError(
|
151 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
152 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
153 |
+
)
|
154 |
+
|
155 |
+
# 2. Define input layers
|
156 |
+
if self.is_input_continuous:
|
157 |
+
self.in_channels = in_channels
|
158 |
+
|
159 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
160 |
+
if use_linear_projection:
|
161 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
162 |
+
else:
|
163 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
164 |
+
elif self.is_input_vectorized:
|
165 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
166 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
167 |
+
|
168 |
+
self.height = sample_size
|
169 |
+
self.width = sample_size
|
170 |
+
self.num_vector_embeds = num_vector_embeds
|
171 |
+
self.num_latent_pixels = self.height * self.width
|
172 |
+
|
173 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
174 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
175 |
+
)
|
176 |
+
elif self.is_input_patches:
|
177 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
178 |
+
|
179 |
+
self.height = sample_size
|
180 |
+
self.width = sample_size
|
181 |
+
|
182 |
+
self.patch_size = patch_size
|
183 |
+
self.pos_embed = PatchEmbed(
|
184 |
+
height=sample_size,
|
185 |
+
width=sample_size,
|
186 |
+
patch_size=patch_size,
|
187 |
+
in_channels=in_channels,
|
188 |
+
embed_dim=inner_dim,
|
189 |
+
)
|
190 |
+
|
191 |
+
# 3. Define transformers blocks
|
192 |
+
self.transformer_blocks = nn.ModuleList(
|
193 |
+
[
|
194 |
+
BasicMVTransformerBlock(
|
195 |
+
inner_dim,
|
196 |
+
num_attention_heads,
|
197 |
+
attention_head_dim,
|
198 |
+
dropout=dropout,
|
199 |
+
cross_attention_dim=cross_attention_dim,
|
200 |
+
activation_fn=activation_fn,
|
201 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
202 |
+
attention_bias=attention_bias,
|
203 |
+
only_cross_attention=only_cross_attention,
|
204 |
+
upcast_attention=upcast_attention,
|
205 |
+
norm_type=norm_type,
|
206 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
207 |
+
num_views=num_views,
|
208 |
+
joint_attention=joint_attention,
|
209 |
+
joint_attention_twice=joint_attention_twice,
|
210 |
+
multiview_attention=multiview_attention,
|
211 |
+
cross_domain_attention=cross_domain_attention
|
212 |
+
)
|
213 |
+
for d in range(num_layers)
|
214 |
+
]
|
215 |
+
)
|
216 |
+
|
217 |
+
# 4. Define output layers
|
218 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
219 |
+
if self.is_input_continuous:
|
220 |
+
# TODO: should use out_channels for continuous projections
|
221 |
+
if use_linear_projection:
|
222 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
223 |
+
else:
|
224 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
225 |
+
elif self.is_input_vectorized:
|
226 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
227 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
228 |
+
elif self.is_input_patches:
|
229 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
230 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
231 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
hidden_states: torch.Tensor,
|
236 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
237 |
+
timestep: Optional[torch.LongTensor] = None,
|
238 |
+
class_labels: Optional[torch.LongTensor] = None,
|
239 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
240 |
+
attention_mask: Optional[torch.Tensor] = None,
|
241 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
242 |
+
return_dict: bool = True,
|
243 |
+
):
|
244 |
+
"""
|
245 |
+
The [`Transformer2DModel`] forward method.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
249 |
+
Input `hidden_states`.
|
250 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
251 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
252 |
+
self-attention.
|
253 |
+
timestep ( `torch.LongTensor`, *optional*):
|
254 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
255 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
256 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
257 |
+
`AdaLayerZeroNorm`.
|
258 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
259 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
260 |
+
|
261 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
262 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
263 |
+
|
264 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
265 |
+
above. This bias will be added to the cross-attention scores.
|
266 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
267 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
268 |
+
tuple.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
272 |
+
`tuple` where the first element is the sample tensor.
|
273 |
+
"""
|
274 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
275 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
276 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
277 |
+
# expects mask of shape:
|
278 |
+
# [batch, key_tokens]
|
279 |
+
# adds singleton query_tokens dimension:
|
280 |
+
# [batch, 1, key_tokens]
|
281 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
282 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
283 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
284 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
285 |
+
# assume that mask is expressed as:
|
286 |
+
# (1 = keep, 0 = discard)
|
287 |
+
# convert mask into a bias that can be added to attention scores:
|
288 |
+
# (keep = +0, discard = -10000.0)
|
289 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
290 |
+
attention_mask = attention_mask.unsqueeze(1)
|
291 |
+
|
292 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
293 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
294 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
295 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
296 |
+
|
297 |
+
# 1. Input
|
298 |
+
if self.is_input_continuous:
|
299 |
+
batch, _, height, width = hidden_states.shape
|
300 |
+
residual = hidden_states
|
301 |
+
|
302 |
+
hidden_states = self.norm(hidden_states)
|
303 |
+
if not self.use_linear_projection:
|
304 |
+
hidden_states = self.proj_in(hidden_states)
|
305 |
+
inner_dim = hidden_states.shape[1]
|
306 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
307 |
+
else:
|
308 |
+
inner_dim = hidden_states.shape[1]
|
309 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
310 |
+
hidden_states = self.proj_in(hidden_states)
|
311 |
+
elif self.is_input_vectorized:
|
312 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
313 |
+
elif self.is_input_patches:
|
314 |
+
hidden_states = self.pos_embed(hidden_states)
|
315 |
+
|
316 |
+
# 2. Blocks
|
317 |
+
for block in self.transformer_blocks:
|
318 |
+
hidden_states = block(
|
319 |
+
hidden_states,
|
320 |
+
attention_mask=attention_mask,
|
321 |
+
encoder_hidden_states=encoder_hidden_states,
|
322 |
+
encoder_attention_mask=encoder_attention_mask,
|
323 |
+
timestep=timestep,
|
324 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
325 |
+
class_labels=class_labels,
|
326 |
+
)
|
327 |
+
|
328 |
+
# 3. Output
|
329 |
+
if self.is_input_continuous:
|
330 |
+
if not self.use_linear_projection:
|
331 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
332 |
+
hidden_states = self.proj_out(hidden_states)
|
333 |
+
else:
|
334 |
+
hidden_states = self.proj_out(hidden_states)
|
335 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
336 |
+
|
337 |
+
output = hidden_states + residual
|
338 |
+
elif self.is_input_vectorized:
|
339 |
+
hidden_states = self.norm_out(hidden_states)
|
340 |
+
logits = self.out(hidden_states)
|
341 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
342 |
+
logits = logits.permute(0, 2, 1)
|
343 |
+
|
344 |
+
# log(p(x_0))
|
345 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
346 |
+
elif self.is_input_patches:
|
347 |
+
# TODO: cleanup!
|
348 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
349 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
350 |
+
)
|
351 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
352 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
353 |
+
hidden_states = self.proj_out_2(hidden_states)
|
354 |
+
|
355 |
+
# unpatchify
|
356 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
357 |
+
hidden_states = hidden_states.reshape(
|
358 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
359 |
+
)
|
360 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
361 |
+
output = hidden_states.reshape(
|
362 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
363 |
+
)
|
364 |
+
|
365 |
+
if not return_dict:
|
366 |
+
return (output,)
|
367 |
+
|
368 |
+
return TransformerMV2DModelOutput(sample=output)
|
369 |
+
|
370 |
+
|
371 |
+
@maybe_allow_in_graph
|
372 |
+
class BasicMVTransformerBlock(nn.Module):
|
373 |
+
r"""
|
374 |
+
A basic Transformer block.
|
375 |
+
|
376 |
+
Parameters:
|
377 |
+
dim (`int`): The number of channels in the input and output.
|
378 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
379 |
+
attention_head_dim (`int`): The number of channels in each head.
|
380 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
381 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
382 |
+
only_cross_attention (`bool`, *optional*):
|
383 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
384 |
+
double_self_attention (`bool`, *optional*):
|
385 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
386 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
387 |
+
num_embeds_ada_norm (:
|
388 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
389 |
+
attention_bias (:
|
390 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(
|
394 |
+
self,
|
395 |
+
dim: int,
|
396 |
+
num_attention_heads: int,
|
397 |
+
attention_head_dim: int,
|
398 |
+
dropout=0.0,
|
399 |
+
cross_attention_dim: Optional[int] = None,
|
400 |
+
activation_fn: str = "geglu",
|
401 |
+
num_embeds_ada_norm: Optional[int] = None,
|
402 |
+
attention_bias: bool = False,
|
403 |
+
only_cross_attention: bool = False,
|
404 |
+
double_self_attention: bool = False,
|
405 |
+
upcast_attention: bool = False,
|
406 |
+
norm_elementwise_affine: bool = True,
|
407 |
+
norm_type: str = "layer_norm",
|
408 |
+
final_dropout: bool = False,
|
409 |
+
num_views: int = 1,
|
410 |
+
joint_attention: bool = False,
|
411 |
+
joint_attention_twice: bool = False,
|
412 |
+
multiview_attention: bool = True,
|
413 |
+
cross_domain_attention: bool = False
|
414 |
+
):
|
415 |
+
super().__init__()
|
416 |
+
self.only_cross_attention = only_cross_attention
|
417 |
+
|
418 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
419 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
420 |
+
|
421 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
422 |
+
raise ValueError(
|
423 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
424 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
425 |
+
)
|
426 |
+
|
427 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
428 |
+
# 1. Self-Attn
|
429 |
+
if self.use_ada_layer_norm:
|
430 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
431 |
+
elif self.use_ada_layer_norm_zero:
|
432 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
433 |
+
else:
|
434 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
435 |
+
|
436 |
+
self.multiview_attention = multiview_attention
|
437 |
+
self.cross_domain_attention = cross_domain_attention
|
438 |
+
# import pdb;pdb.set_trace()
|
439 |
+
self.attn1 = CustomAttention(
|
440 |
+
query_dim=dim,
|
441 |
+
heads=num_attention_heads,
|
442 |
+
dim_head=attention_head_dim,
|
443 |
+
dropout=dropout,
|
444 |
+
bias=attention_bias,
|
445 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
446 |
+
upcast_attention=upcast_attention,
|
447 |
+
processor=MVAttnProcessor()
|
448 |
+
)
|
449 |
+
|
450 |
+
# 2. Cross-Attn
|
451 |
+
if cross_attention_dim is not None or double_self_attention:
|
452 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
453 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
454 |
+
# the second cross attention block.
|
455 |
+
self.norm2 = (
|
456 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
457 |
+
if self.use_ada_layer_norm
|
458 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
459 |
+
)
|
460 |
+
self.attn2 = Attention(
|
461 |
+
query_dim=dim,
|
462 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
463 |
+
heads=num_attention_heads,
|
464 |
+
dim_head=attention_head_dim,
|
465 |
+
dropout=dropout,
|
466 |
+
bias=attention_bias,
|
467 |
+
upcast_attention=upcast_attention,
|
468 |
+
) # is self-attn if encoder_hidden_states is none
|
469 |
+
else:
|
470 |
+
self.norm2 = None
|
471 |
+
self.attn2 = None
|
472 |
+
|
473 |
+
# 3. Feed-forward
|
474 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
475 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
476 |
+
|
477 |
+
# let chunk size default to None
|
478 |
+
self._chunk_size = None
|
479 |
+
self._chunk_dim = 0
|
480 |
+
|
481 |
+
self.num_views = num_views
|
482 |
+
|
483 |
+
self.joint_attention = joint_attention
|
484 |
+
|
485 |
+
if self.joint_attention:
|
486 |
+
# Joint task -Attn
|
487 |
+
self.attn_joint = CustomJointAttention(
|
488 |
+
query_dim=dim,
|
489 |
+
heads=num_attention_heads,
|
490 |
+
dim_head=attention_head_dim,
|
491 |
+
dropout=dropout,
|
492 |
+
bias=attention_bias,
|
493 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
494 |
+
upcast_attention=upcast_attention,
|
495 |
+
processor=JointAttnProcessor()
|
496 |
+
)
|
497 |
+
nn.init.zeros_(self.attn_joint.to_out[0].weight.data)
|
498 |
+
self.norm_joint = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
499 |
+
|
500 |
+
|
501 |
+
self.joint_attention_twice = joint_attention_twice
|
502 |
+
|
503 |
+
if self.joint_attention_twice:
|
504 |
+
print("joint twice")
|
505 |
+
# Joint task -Attn
|
506 |
+
self.attn_joint_twice = CustomJointAttention(
|
507 |
+
query_dim=dim,
|
508 |
+
heads=num_attention_heads,
|
509 |
+
dim_head=attention_head_dim,
|
510 |
+
dropout=dropout,
|
511 |
+
bias=attention_bias,
|
512 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
513 |
+
upcast_attention=upcast_attention,
|
514 |
+
processor=JointAttnProcessor()
|
515 |
+
)
|
516 |
+
nn.init.zeros_(self.attn_joint_twice.to_out[0].weight.data)
|
517 |
+
self.norm_joint_twice = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
518 |
+
|
519 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
520 |
+
# Sets chunk feed-forward
|
521 |
+
self._chunk_size = chunk_size
|
522 |
+
self._chunk_dim = dim
|
523 |
+
|
524 |
+
def forward(
|
525 |
+
self,
|
526 |
+
hidden_states: torch.FloatTensor,
|
527 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
528 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
529 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
530 |
+
timestep: Optional[torch.LongTensor] = None,
|
531 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
532 |
+
class_labels: Optional[torch.LongTensor] = None,
|
533 |
+
):
|
534 |
+
assert attention_mask is None # not supported yet
|
535 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
536 |
+
# 1. Self-Attention
|
537 |
+
if self.use_ada_layer_norm:
|
538 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
539 |
+
elif self.use_ada_layer_norm_zero:
|
540 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
541 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
542 |
+
)
|
543 |
+
else:
|
544 |
+
norm_hidden_states = self.norm1(hidden_states)
|
545 |
+
|
546 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
547 |
+
attn_output = self.attn1(
|
548 |
+
norm_hidden_states,
|
549 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
550 |
+
attention_mask=attention_mask,
|
551 |
+
num_views=self.num_views,
|
552 |
+
multiview_attention=self.multiview_attention,
|
553 |
+
cross_domain_attention=self.cross_domain_attention,
|
554 |
+
**cross_attention_kwargs,
|
555 |
+
)
|
556 |
+
|
557 |
+
|
558 |
+
if self.use_ada_layer_norm_zero:
|
559 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
560 |
+
hidden_states = attn_output + hidden_states
|
561 |
+
|
562 |
+
# joint attention twice
|
563 |
+
if self.joint_attention_twice:
|
564 |
+
norm_hidden_states = (
|
565 |
+
self.norm_joint_twice(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_twice(hidden_states)
|
566 |
+
)
|
567 |
+
hidden_states = self.attn_joint_twice(norm_hidden_states) + hidden_states
|
568 |
+
|
569 |
+
# 2. Cross-Attention
|
570 |
+
if self.attn2 is not None:
|
571 |
+
norm_hidden_states = (
|
572 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
573 |
+
)
|
574 |
+
attn_output = self.attn2(
|
575 |
+
norm_hidden_states,
|
576 |
+
encoder_hidden_states=encoder_hidden_states,
|
577 |
+
attention_mask=encoder_attention_mask,
|
578 |
+
**cross_attention_kwargs,
|
579 |
+
)
|
580 |
+
hidden_states = attn_output + hidden_states
|
581 |
+
|
582 |
+
# 3. Feed-forward
|
583 |
+
norm_hidden_states = self.norm3(hidden_states)
|
584 |
+
|
585 |
+
if self.use_ada_layer_norm_zero:
|
586 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
587 |
+
|
588 |
+
if self._chunk_size is not None:
|
589 |
+
# "feed_forward_chunk_size" can be used to save memory
|
590 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
591 |
+
raise ValueError(
|
592 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
593 |
+
)
|
594 |
+
|
595 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
596 |
+
ff_output = torch.cat(
|
597 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
598 |
+
dim=self._chunk_dim,
|
599 |
+
)
|
600 |
+
else:
|
601 |
+
ff_output = self.ff(norm_hidden_states)
|
602 |
+
|
603 |
+
if self.use_ada_layer_norm_zero:
|
604 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
605 |
+
|
606 |
+
hidden_states = ff_output + hidden_states
|
607 |
+
|
608 |
+
if self.joint_attention:
|
609 |
+
norm_hidden_states = (
|
610 |
+
self.norm_joint(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint(hidden_states)
|
611 |
+
)
|
612 |
+
hidden_states = self.attn_joint(norm_hidden_states) + hidden_states
|
613 |
+
|
614 |
+
return hidden_states
|
615 |
+
|
616 |
+
|
617 |
+
class CustomAttention(Attention):
|
618 |
+
def set_use_memory_efficient_attention_xformers(
|
619 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
620 |
+
):
|
621 |
+
processor = XFormersMVAttnProcessor()
|
622 |
+
self.set_processor(processor)
|
623 |
+
# print("using xformers attention processor")
|
624 |
+
|
625 |
+
|
626 |
+
class CustomJointAttention(Attention):
|
627 |
+
def set_use_memory_efficient_attention_xformers(
|
628 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
629 |
+
):
|
630 |
+
processor = XFormersJointAttnProcessor()
|
631 |
+
self.set_processor(processor)
|
632 |
+
# print("using xformers attention processor")
|
633 |
+
|
634 |
+
class MVAttnProcessor:
|
635 |
+
r"""
|
636 |
+
Default processor for performing attention-related computations.
|
637 |
+
"""
|
638 |
+
|
639 |
+
def __call__(
|
640 |
+
self,
|
641 |
+
attn: Attention,
|
642 |
+
hidden_states,
|
643 |
+
encoder_hidden_states=None,
|
644 |
+
attention_mask=None,
|
645 |
+
temb=None,
|
646 |
+
num_views=1,
|
647 |
+
multiview_attention=True
|
648 |
+
):
|
649 |
+
residual = hidden_states
|
650 |
+
|
651 |
+
if attn.spatial_norm is not None:
|
652 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
653 |
+
|
654 |
+
input_ndim = hidden_states.ndim
|
655 |
+
|
656 |
+
if input_ndim == 4:
|
657 |
+
batch_size, channel, height, width = hidden_states.shape
|
658 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
659 |
+
|
660 |
+
batch_size, sequence_length, _ = (
|
661 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
662 |
+
)
|
663 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
664 |
+
|
665 |
+
if attn.group_norm is not None:
|
666 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
667 |
+
|
668 |
+
query = attn.to_q(hidden_states)
|
669 |
+
|
670 |
+
if encoder_hidden_states is None:
|
671 |
+
encoder_hidden_states = hidden_states
|
672 |
+
elif attn.norm_cross:
|
673 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
674 |
+
|
675 |
+
key = attn.to_k(encoder_hidden_states)
|
676 |
+
value = attn.to_v(encoder_hidden_states)
|
677 |
+
|
678 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
679 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
680 |
+
# pdb.set_trace()
|
681 |
+
# multi-view self-attention
|
682 |
+
if multiview_attention:
|
683 |
+
if num_views <= 6:
|
684 |
+
# after use xformer; possible to train with 6 views
|
685 |
+
# key = rearrange(key, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
686 |
+
# value = rearrange(value, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
687 |
+
key = rearrange(key, '(b t) d c-> b (t d) c', t=num_views).unsqueeze(1).repeat(1,num_views,1,1).flatten(0,1)
|
688 |
+
value = rearrange(value, '(b t) d c-> b (t d) c', t=num_views).unsqueeze(1).repeat(1,num_views,1,1).flatten(0,1)
|
689 |
+
|
690 |
+
else:# apply sparse attention
|
691 |
+
pass
|
692 |
+
# print("use sparse attention")
|
693 |
+
# # seems that the sparse random sampling cause problems
|
694 |
+
# # don't use random sampling, just fix the indexes
|
695 |
+
# onekey = rearrange(key, "(b t) d c -> b t d c", t=num_views)
|
696 |
+
# onevalue = rearrange(value, "(b t) d c -> b t d c", t=num_views)
|
697 |
+
# allkeys = []
|
698 |
+
# allvalues = []
|
699 |
+
# all_indexes = {
|
700 |
+
# 0 : [0, 2, 3, 4],
|
701 |
+
# 1: [0, 1, 3, 5],
|
702 |
+
# 2: [0, 2, 3, 4],
|
703 |
+
# 3: [0, 2, 3, 4],
|
704 |
+
# 4: [0, 2, 3, 4],
|
705 |
+
# 5: [0, 1, 3, 5]
|
706 |
+
# }
|
707 |
+
# for jj in range(num_views):
|
708 |
+
# # valid_index = [x for x in range(0, num_views) if x!= jj]
|
709 |
+
# # indexes = random.sample(valid_index, 3) + [jj] + [0]
|
710 |
+
# indexes = all_indexes[jj]
|
711 |
+
|
712 |
+
# indexes = torch.tensor(indexes).long().to(key.device)
|
713 |
+
# allkeys.append(onekey[:, indexes])
|
714 |
+
# allvalues.append(onevalue[:, indexes])
|
715 |
+
# keys = torch.stack(allkeys, dim=1) # checked, should be dim=1
|
716 |
+
# values = torch.stack(allvalues, dim=1)
|
717 |
+
# key = rearrange(keys, 'b t f d c -> (b t) (f d) c')
|
718 |
+
# value = rearrange(values, 'b t f d c -> (b t) (f d) c')
|
719 |
+
|
720 |
+
|
721 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
722 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
723 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
724 |
+
|
725 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
726 |
+
hidden_states = torch.bmm(attention_probs, value)
|
727 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
728 |
+
|
729 |
+
# linear proj
|
730 |
+
hidden_states = attn.to_out[0](hidden_states)
|
731 |
+
# dropout
|
732 |
+
hidden_states = attn.to_out[1](hidden_states)
|
733 |
+
|
734 |
+
if input_ndim == 4:
|
735 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
736 |
+
|
737 |
+
if attn.residual_connection:
|
738 |
+
hidden_states = hidden_states + residual
|
739 |
+
|
740 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
741 |
+
|
742 |
+
return hidden_states
|
743 |
+
|
744 |
+
|
745 |
+
class XFormersMVAttnProcessor:
|
746 |
+
r"""
|
747 |
+
Default processor for performing attention-related computations.
|
748 |
+
"""
|
749 |
+
|
750 |
+
def __call__(
|
751 |
+
self,
|
752 |
+
attn: Attention,
|
753 |
+
hidden_states,
|
754 |
+
encoder_hidden_states=None,
|
755 |
+
attention_mask=None,
|
756 |
+
temb=None,
|
757 |
+
num_views=1.,
|
758 |
+
multiview_attention=True,
|
759 |
+
cross_domain_attention=False,
|
760 |
+
):
|
761 |
+
residual = hidden_states
|
762 |
+
|
763 |
+
if attn.spatial_norm is not None:
|
764 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
765 |
+
|
766 |
+
input_ndim = hidden_states.ndim
|
767 |
+
|
768 |
+
if input_ndim == 4:
|
769 |
+
batch_size, channel, height, width = hidden_states.shape
|
770 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
771 |
+
|
772 |
+
batch_size, sequence_length, _ = (
|
773 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
774 |
+
)
|
775 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
776 |
+
|
777 |
+
# from yuancheng; here attention_mask is None
|
778 |
+
if attention_mask is not None:
|
779 |
+
# expand our mask's singleton query_tokens dimension:
|
780 |
+
# [batch*heads, 1, key_tokens] ->
|
781 |
+
# [batch*heads, query_tokens, key_tokens]
|
782 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
783 |
+
# [batch*heads, query_tokens, key_tokens]
|
784 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
785 |
+
_, query_tokens, _ = hidden_states.shape
|
786 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
787 |
+
|
788 |
+
if attn.group_norm is not None:
|
789 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
790 |
+
|
791 |
+
query = attn.to_q(hidden_states)
|
792 |
+
|
793 |
+
if encoder_hidden_states is None:
|
794 |
+
encoder_hidden_states = hidden_states
|
795 |
+
elif attn.norm_cross:
|
796 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
797 |
+
|
798 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
799 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
800 |
+
|
801 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
802 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
803 |
+
# pdb.set_trace()
|
804 |
+
# multi-view self-attention
|
805 |
+
if multiview_attention:
|
806 |
+
key = rearrange(key_raw, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
807 |
+
value = rearrange(value_raw, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
808 |
+
|
809 |
+
if cross_domain_attention:
|
810 |
+
# memory efficient, cross domain attention
|
811 |
+
key_0, key_1 = torch.chunk(key_raw, dim=0, chunks=2) # keys shape (b t) d c
|
812 |
+
value_0, value_1 = torch.chunk(value_raw, dim=0, chunks=2)
|
813 |
+
key_cross = torch.concat([key_1, key_0], dim=0)
|
814 |
+
value_cross = torch.concat([value_1, value_0], dim=0) # shape (b t) d c
|
815 |
+
key = torch.cat([key, key_cross], dim=1)
|
816 |
+
value = torch.cat([value, value_cross], dim=1) # shape (b t) (t+1 d) c
|
817 |
+
else:
|
818 |
+
# print("don't use multiview attention.")
|
819 |
+
key = key_raw
|
820 |
+
value = value_raw
|
821 |
+
|
822 |
+
query = attn.head_to_batch_dim(query)
|
823 |
+
key = attn.head_to_batch_dim(key)
|
824 |
+
value = attn.head_to_batch_dim(value)
|
825 |
+
|
826 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
827 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
828 |
+
|
829 |
+
# linear proj
|
830 |
+
hidden_states = attn.to_out[0](hidden_states)
|
831 |
+
# dropout
|
832 |
+
hidden_states = attn.to_out[1](hidden_states)
|
833 |
+
|
834 |
+
if input_ndim == 4:
|
835 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
836 |
+
|
837 |
+
if attn.residual_connection:
|
838 |
+
hidden_states = hidden_states + residual
|
839 |
+
|
840 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
841 |
+
|
842 |
+
return hidden_states
|
843 |
+
|
844 |
+
|
845 |
+
|
846 |
+
class XFormersJointAttnProcessor:
|
847 |
+
r"""
|
848 |
+
Default processor for performing attention-related computations.
|
849 |
+
"""
|
850 |
+
|
851 |
+
def __call__(
|
852 |
+
self,
|
853 |
+
attn: Attention,
|
854 |
+
hidden_states,
|
855 |
+
encoder_hidden_states=None,
|
856 |
+
attention_mask=None,
|
857 |
+
temb=None,
|
858 |
+
num_tasks=2
|
859 |
+
):
|
860 |
+
|
861 |
+
residual = hidden_states
|
862 |
+
|
863 |
+
if attn.spatial_norm is not None:
|
864 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
865 |
+
|
866 |
+
input_ndim = hidden_states.ndim
|
867 |
+
|
868 |
+
if input_ndim == 4:
|
869 |
+
batch_size, channel, height, width = hidden_states.shape
|
870 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
871 |
+
|
872 |
+
batch_size, sequence_length, _ = (
|
873 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
874 |
+
)
|
875 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
876 |
+
|
877 |
+
# from yuancheng; here attention_mask is None
|
878 |
+
if attention_mask is not None:
|
879 |
+
# expand our mask's singleton query_tokens dimension:
|
880 |
+
# [batch*heads, 1, key_tokens] ->
|
881 |
+
# [batch*heads, query_tokens, key_tokens]
|
882 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
883 |
+
# [batch*heads, query_tokens, key_tokens]
|
884 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
885 |
+
_, query_tokens, _ = hidden_states.shape
|
886 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
887 |
+
|
888 |
+
if attn.group_norm is not None:
|
889 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
890 |
+
|
891 |
+
query = attn.to_q(hidden_states)
|
892 |
+
|
893 |
+
if encoder_hidden_states is None:
|
894 |
+
encoder_hidden_states = hidden_states
|
895 |
+
elif attn.norm_cross:
|
896 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
897 |
+
|
898 |
+
key = attn.to_k(encoder_hidden_states)
|
899 |
+
value = attn.to_v(encoder_hidden_states)
|
900 |
+
|
901 |
+
assert num_tasks == 2 # only support two tasks now
|
902 |
+
|
903 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
904 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
905 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
906 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
907 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
908 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
909 |
+
|
910 |
+
|
911 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
912 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
913 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
914 |
+
|
915 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
916 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
917 |
+
|
918 |
+
# linear proj
|
919 |
+
hidden_states = attn.to_out[0](hidden_states)
|
920 |
+
# dropout
|
921 |
+
hidden_states = attn.to_out[1](hidden_states)
|
922 |
+
|
923 |
+
if input_ndim == 4:
|
924 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
925 |
+
|
926 |
+
if attn.residual_connection:
|
927 |
+
hidden_states = hidden_states + residual
|
928 |
+
|
929 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
930 |
+
|
931 |
+
return hidden_states
|
932 |
+
|
933 |
+
|
934 |
+
class JointAttnProcessor:
|
935 |
+
r"""
|
936 |
+
Default processor for performing attention-related computations.
|
937 |
+
"""
|
938 |
+
|
939 |
+
def __call__(
|
940 |
+
self,
|
941 |
+
attn: Attention,
|
942 |
+
hidden_states,
|
943 |
+
encoder_hidden_states=None,
|
944 |
+
attention_mask=None,
|
945 |
+
temb=None,
|
946 |
+
num_tasks=2
|
947 |
+
):
|
948 |
+
|
949 |
+
residual = hidden_states
|
950 |
+
|
951 |
+
if attn.spatial_norm is not None:
|
952 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
953 |
+
|
954 |
+
input_ndim = hidden_states.ndim
|
955 |
+
|
956 |
+
if input_ndim == 4:
|
957 |
+
batch_size, channel, height, width = hidden_states.shape
|
958 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
959 |
+
|
960 |
+
batch_size, sequence_length, _ = (
|
961 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
962 |
+
)
|
963 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
964 |
+
|
965 |
+
|
966 |
+
if attn.group_norm is not None:
|
967 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
968 |
+
|
969 |
+
query = attn.to_q(hidden_states)
|
970 |
+
|
971 |
+
if encoder_hidden_states is None:
|
972 |
+
encoder_hidden_states = hidden_states
|
973 |
+
elif attn.norm_cross:
|
974 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
975 |
+
|
976 |
+
key = attn.to_k(encoder_hidden_states)
|
977 |
+
value = attn.to_v(encoder_hidden_states)
|
978 |
+
|
979 |
+
assert num_tasks == 2 # only support two tasks now
|
980 |
+
|
981 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
982 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
983 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
984 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
985 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
986 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
987 |
+
|
988 |
+
|
989 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
990 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
991 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
992 |
+
|
993 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
994 |
+
hidden_states = torch.bmm(attention_probs, value)
|
995 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
996 |
+
|
997 |
+
# linear proj
|
998 |
+
hidden_states = attn.to_out[0](hidden_states)
|
999 |
+
# dropout
|
1000 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1001 |
+
|
1002 |
+
if input_ndim == 4:
|
1003 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1004 |
+
|
1005 |
+
if attn.residual_connection:
|
1006 |
+
hidden_states = hidden_states + residual
|
1007 |
+
|
1008 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1009 |
+
|
1010 |
+
return hidden_states
|
2D_Stage/tuneavideo/models/unet.py
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
|
13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
+
from diffusers import ModelMixin
|
15 |
+
from diffusers.utils import BaseOutput, logging
|
16 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
17 |
+
from .unet_blocks import (
|
18 |
+
CrossAttnDownBlock3D,
|
19 |
+
CrossAttnUpBlock3D,
|
20 |
+
DownBlock3D,
|
21 |
+
UNetMidBlock3DCrossAttn,
|
22 |
+
UpBlock3D,
|
23 |
+
get_down_block,
|
24 |
+
get_up_block,
|
25 |
+
)
|
26 |
+
from .resnet import InflatedConv3d
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class UNet3DConditionOutput(BaseOutput):
|
34 |
+
sample: torch.FloatTensor
|
35 |
+
|
36 |
+
|
37 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
38 |
+
_supports_gradient_checkpointing = True
|
39 |
+
|
40 |
+
@register_to_config
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
sample_size: Optional[int] = None,
|
44 |
+
in_channels: int = 4,
|
45 |
+
out_channels: int = 4,
|
46 |
+
center_input_sample: bool = False,
|
47 |
+
flip_sin_to_cos: bool = True,
|
48 |
+
freq_shift: int = 0,
|
49 |
+
down_block_types: Tuple[str] = (
|
50 |
+
"CrossAttnDownBlock3D",
|
51 |
+
"CrossAttnDownBlock3D",
|
52 |
+
"CrossAttnDownBlock3D",
|
53 |
+
"DownBlock3D",
|
54 |
+
),
|
55 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
56 |
+
up_block_types: Tuple[str] = (
|
57 |
+
"UpBlock3D",
|
58 |
+
"CrossAttnUpBlock3D",
|
59 |
+
"CrossAttnUpBlock3D",
|
60 |
+
"CrossAttnUpBlock3D"
|
61 |
+
),
|
62 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
63 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
64 |
+
layers_per_block: int = 2,
|
65 |
+
downsample_padding: int = 1,
|
66 |
+
mid_block_scale_factor: float = 1,
|
67 |
+
act_fn: str = "silu",
|
68 |
+
norm_num_groups: int = 32,
|
69 |
+
norm_eps: float = 1e-5,
|
70 |
+
cross_attention_dim: int = 1280,
|
71 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
72 |
+
dual_cross_attention: bool = False,
|
73 |
+
use_linear_projection: bool = False,
|
74 |
+
class_embed_type: Optional[str] = None,
|
75 |
+
num_class_embeds: Optional[int] = None,
|
76 |
+
upcast_attention: bool = False,
|
77 |
+
resnet_time_scale_shift: str = "default",
|
78 |
+
use_attn_temp: bool = False,
|
79 |
+
camera_input_dim: int = 12,
|
80 |
+
camera_hidden_dim: int = 320,
|
81 |
+
camera_output_dim: int = 1280,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.sample_size = sample_size
|
86 |
+
time_embed_dim = block_out_channels[0] * 4
|
87 |
+
|
88 |
+
# input
|
89 |
+
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
90 |
+
|
91 |
+
# time
|
92 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
93 |
+
timestep_input_dim = block_out_channels[0]
|
94 |
+
|
95 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
96 |
+
|
97 |
+
# class embedding
|
98 |
+
if class_embed_type is None and num_class_embeds is not None:
|
99 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
100 |
+
elif class_embed_type == "timestep":
|
101 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
102 |
+
elif class_embed_type == "identity":
|
103 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
104 |
+
else:
|
105 |
+
self.class_embedding = None
|
106 |
+
|
107 |
+
# camera metrix
|
108 |
+
# def init_linear(l, stddev):
|
109 |
+
# nn.init.normal_(l.weight, std=stddev)
|
110 |
+
# if l.bias is not None:
|
111 |
+
# nn.init.constant_(l.bias, 0.0)
|
112 |
+
# self.camera_embedding_1 = nn.Linear(camera_input_dim, camera_hidden_dim)
|
113 |
+
# self.camera_embedding_2 = nn.Linear(camera_hidden_dim, camera_output_dim)
|
114 |
+
# init_linear(self.camera_embedding_1, 0.25)
|
115 |
+
# init_linear(self.camera_embedding_2, 0.25)
|
116 |
+
|
117 |
+
self.camera_embedding = nn.Sequential(
|
118 |
+
nn.Linear(camera_input_dim, time_embed_dim),
|
119 |
+
nn.SiLU(),
|
120 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
121 |
+
)
|
122 |
+
|
123 |
+
self.down_blocks = nn.ModuleList([])
|
124 |
+
self.mid_block = None
|
125 |
+
self.up_blocks = nn.ModuleList([])
|
126 |
+
|
127 |
+
if isinstance(only_cross_attention, bool):
|
128 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
129 |
+
|
130 |
+
if isinstance(attention_head_dim, int):
|
131 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
132 |
+
|
133 |
+
# down
|
134 |
+
output_channel = block_out_channels[0]
|
135 |
+
for i, down_block_type in enumerate(down_block_types):
|
136 |
+
input_channel = output_channel
|
137 |
+
output_channel = block_out_channels[i]
|
138 |
+
is_final_block = i == len(block_out_channels) - 1
|
139 |
+
|
140 |
+
down_block = get_down_block(
|
141 |
+
down_block_type,
|
142 |
+
num_layers=layers_per_block,
|
143 |
+
in_channels=input_channel,
|
144 |
+
out_channels=output_channel,
|
145 |
+
temb_channels=time_embed_dim,
|
146 |
+
add_downsample=not is_final_block,
|
147 |
+
resnet_eps=norm_eps,
|
148 |
+
resnet_act_fn=act_fn,
|
149 |
+
resnet_groups=norm_num_groups,
|
150 |
+
cross_attention_dim=cross_attention_dim,
|
151 |
+
attn_num_head_channels=attention_head_dim[i],
|
152 |
+
downsample_padding=downsample_padding,
|
153 |
+
dual_cross_attention=dual_cross_attention,
|
154 |
+
use_linear_projection=use_linear_projection,
|
155 |
+
only_cross_attention=only_cross_attention[i],
|
156 |
+
upcast_attention=upcast_attention,
|
157 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
158 |
+
use_attn_temp=use_attn_temp
|
159 |
+
)
|
160 |
+
self.down_blocks.append(down_block)
|
161 |
+
|
162 |
+
# mid
|
163 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
164 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
165 |
+
in_channels=block_out_channels[-1],
|
166 |
+
temb_channels=time_embed_dim,
|
167 |
+
resnet_eps=norm_eps,
|
168 |
+
resnet_act_fn=act_fn,
|
169 |
+
output_scale_factor=mid_block_scale_factor,
|
170 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
171 |
+
cross_attention_dim=cross_attention_dim,
|
172 |
+
attn_num_head_channels=attention_head_dim[-1],
|
173 |
+
resnet_groups=norm_num_groups,
|
174 |
+
dual_cross_attention=dual_cross_attention,
|
175 |
+
use_linear_projection=use_linear_projection,
|
176 |
+
upcast_attention=upcast_attention,
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
180 |
+
|
181 |
+
# count how many layers upsample the videos
|
182 |
+
self.num_upsamplers = 0
|
183 |
+
|
184 |
+
# up
|
185 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
186 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
187 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
188 |
+
output_channel = reversed_block_out_channels[0]
|
189 |
+
for i, up_block_type in enumerate(up_block_types):
|
190 |
+
is_final_block = i == len(block_out_channels) - 1
|
191 |
+
|
192 |
+
prev_output_channel = output_channel
|
193 |
+
output_channel = reversed_block_out_channels[i]
|
194 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
195 |
+
|
196 |
+
# add upsample block for all BUT final layer
|
197 |
+
if not is_final_block:
|
198 |
+
add_upsample = True
|
199 |
+
self.num_upsamplers += 1
|
200 |
+
else:
|
201 |
+
add_upsample = False
|
202 |
+
|
203 |
+
up_block = get_up_block(
|
204 |
+
up_block_type,
|
205 |
+
num_layers=layers_per_block + 1,
|
206 |
+
in_channels=input_channel,
|
207 |
+
out_channels=output_channel,
|
208 |
+
prev_output_channel=prev_output_channel,
|
209 |
+
temb_channels=time_embed_dim,
|
210 |
+
add_upsample=add_upsample,
|
211 |
+
resnet_eps=norm_eps,
|
212 |
+
resnet_act_fn=act_fn,
|
213 |
+
resnet_groups=norm_num_groups,
|
214 |
+
cross_attention_dim=cross_attention_dim,
|
215 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
216 |
+
dual_cross_attention=dual_cross_attention,
|
217 |
+
use_linear_projection=use_linear_projection,
|
218 |
+
only_cross_attention=only_cross_attention[i],
|
219 |
+
upcast_attention=upcast_attention,
|
220 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
221 |
+
use_attn_temp=use_attn_temp,
|
222 |
+
)
|
223 |
+
self.up_blocks.append(up_block)
|
224 |
+
prev_output_channel = output_channel
|
225 |
+
|
226 |
+
# out
|
227 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
228 |
+
self.conv_act = nn.SiLU()
|
229 |
+
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
230 |
+
|
231 |
+
def set_attention_slice(self, slice_size):
|
232 |
+
r"""
|
233 |
+
Enable sliced attention computation.
|
234 |
+
|
235 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
236 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
240 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
241 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
242 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
243 |
+
must be a multiple of `slice_size`.
|
244 |
+
"""
|
245 |
+
sliceable_head_dims = []
|
246 |
+
|
247 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
248 |
+
if hasattr(module, "set_attention_slice"):
|
249 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
250 |
+
|
251 |
+
for child in module.children():
|
252 |
+
fn_recursive_retrieve_slicable_dims(child)
|
253 |
+
|
254 |
+
# retrieve number of attention layers
|
255 |
+
for module in self.children():
|
256 |
+
fn_recursive_retrieve_slicable_dims(module)
|
257 |
+
|
258 |
+
num_slicable_layers = len(sliceable_head_dims)
|
259 |
+
|
260 |
+
if slice_size == "auto":
|
261 |
+
# half the attention head size is usually a good trade-off between
|
262 |
+
# speed and memory
|
263 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
264 |
+
elif slice_size == "max":
|
265 |
+
# make smallest slice possible
|
266 |
+
slice_size = num_slicable_layers * [1]
|
267 |
+
|
268 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
269 |
+
|
270 |
+
if len(slice_size) != len(sliceable_head_dims):
|
271 |
+
raise ValueError(
|
272 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
273 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
274 |
+
)
|
275 |
+
|
276 |
+
for i in range(len(slice_size)):
|
277 |
+
size = slice_size[i]
|
278 |
+
dim = sliceable_head_dims[i]
|
279 |
+
if size is not None and size > dim:
|
280 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
281 |
+
|
282 |
+
# Recursively walk through all the children.
|
283 |
+
# Any children which exposes the set_attention_slice method
|
284 |
+
# gets the message
|
285 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
286 |
+
if hasattr(module, "set_attention_slice"):
|
287 |
+
module.set_attention_slice(slice_size.pop())
|
288 |
+
|
289 |
+
for child in module.children():
|
290 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
291 |
+
|
292 |
+
reversed_slice_size = list(reversed(slice_size))
|
293 |
+
for module in self.children():
|
294 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
295 |
+
|
296 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
297 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
298 |
+
module.gradient_checkpointing = value
|
299 |
+
|
300 |
+
def forward(
|
301 |
+
self,
|
302 |
+
sample: torch.FloatTensor,
|
303 |
+
timestep: Union[torch.Tensor, float, int],
|
304 |
+
encoder_hidden_states: torch.Tensor,
|
305 |
+
camera_matrixs: Optional[torch.Tensor] = None,
|
306 |
+
class_labels: Optional[torch.Tensor] = None,
|
307 |
+
attention_mask: Optional[torch.Tensor] = None,
|
308 |
+
return_dict: bool = True,
|
309 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
310 |
+
r"""
|
311 |
+
Args:
|
312 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
313 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
314 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
315 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
316 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
317 |
+
|
318 |
+
Returns:
|
319 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
320 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
321 |
+
returning a tuple, the first element is the sample tensor.
|
322 |
+
"""
|
323 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
324 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
325 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
326 |
+
# on the fly if necessary.
|
327 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
328 |
+
|
329 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
330 |
+
forward_upsample_size = False
|
331 |
+
upsample_size = None
|
332 |
+
|
333 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
334 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
335 |
+
forward_upsample_size = True
|
336 |
+
|
337 |
+
# prepare attention_mask
|
338 |
+
if attention_mask is not None:
|
339 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
340 |
+
attention_mask = attention_mask.unsqueeze(1)
|
341 |
+
|
342 |
+
# center input if necessary
|
343 |
+
if self.config.center_input_sample:
|
344 |
+
sample = 2 * sample - 1.0
|
345 |
+
# time
|
346 |
+
timesteps = timestep
|
347 |
+
if not torch.is_tensor(timesteps):
|
348 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
349 |
+
is_mps = sample.device.type == "mps"
|
350 |
+
if isinstance(timestep, float):
|
351 |
+
dtype = torch.float32 if is_mps else torch.float64
|
352 |
+
else:
|
353 |
+
dtype = torch.int32 if is_mps else torch.int64
|
354 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
355 |
+
elif len(timesteps.shape) == 0:
|
356 |
+
timesteps = timesteps[None].to(sample.device)
|
357 |
+
|
358 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
359 |
+
timesteps = timesteps.expand(sample.shape[0])
|
360 |
+
|
361 |
+
t_emb = self.time_proj(timesteps)
|
362 |
+
|
363 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
364 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
365 |
+
# there might be better ways to encapsulate this.
|
366 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
367 |
+
emb = self.time_embedding(t_emb) #torch.Size([32, 1280])
|
368 |
+
emb = torch.unsqueeze(emb, 1)
|
369 |
+
if camera_matrixs is not None:
|
370 |
+
# came emb
|
371 |
+
cam_emb = self.camera_embedding(camera_matrixs)
|
372 |
+
# cam_emb = self.camera_embedding_2(cam_emb)
|
373 |
+
emb = emb.repeat(1,cam_emb.shape[1],1) #torch.Size([32, 4, 1280])
|
374 |
+
emb = emb + cam_emb
|
375 |
+
|
376 |
+
# import pdb;pdb.set_trace()
|
377 |
+
if self.class_embedding is not None:
|
378 |
+
# if class_labels is None:
|
379 |
+
# raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
380 |
+
if class_labels is not None:
|
381 |
+
|
382 |
+
if self.config.class_embed_type == "timestep":
|
383 |
+
class_labels = self.time_proj(class_labels)
|
384 |
+
|
385 |
+
class_emb = self.class_embedding(class_labels)
|
386 |
+
emb = emb + class_emb
|
387 |
+
|
388 |
+
# pre-process
|
389 |
+
sample = self.conv_in(sample)
|
390 |
+
|
391 |
+
# down
|
392 |
+
down_block_res_samples = (sample,)
|
393 |
+
for downsample_block in self.down_blocks:
|
394 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
395 |
+
sample, res_samples = downsample_block(
|
396 |
+
hidden_states=sample,
|
397 |
+
temb=emb,
|
398 |
+
encoder_hidden_states=encoder_hidden_states,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
403 |
+
|
404 |
+
down_block_res_samples += res_samples
|
405 |
+
|
406 |
+
# mid
|
407 |
+
sample = self.mid_block(
|
408 |
+
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
409 |
+
)
|
410 |
+
|
411 |
+
# up
|
412 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
413 |
+
is_final_block = i == len(self.up_blocks) - 1
|
414 |
+
|
415 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
416 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
417 |
+
|
418 |
+
# if we have not reached the final block and need to forward the
|
419 |
+
# upsample size, we do it here
|
420 |
+
if not is_final_block and forward_upsample_size:
|
421 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
422 |
+
|
423 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
424 |
+
sample = upsample_block(
|
425 |
+
hidden_states=sample,
|
426 |
+
temb=emb,
|
427 |
+
res_hidden_states_tuple=res_samples,
|
428 |
+
encoder_hidden_states=encoder_hidden_states,
|
429 |
+
upsample_size=upsample_size,
|
430 |
+
attention_mask=attention_mask,
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
sample = upsample_block(
|
434 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
435 |
+
)
|
436 |
+
# post-process
|
437 |
+
sample = self.conv_norm_out(sample)
|
438 |
+
sample = self.conv_act(sample)
|
439 |
+
sample = self.conv_out(sample)
|
440 |
+
|
441 |
+
if not return_dict:
|
442 |
+
return (sample,)
|
443 |
+
|
444 |
+
return UNet3DConditionOutput(sample=sample)
|
445 |
+
|
446 |
+
@classmethod
|
447 |
+
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
|
448 |
+
if subfolder is not None:
|
449 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
450 |
+
|
451 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
452 |
+
if not os.path.isfile(config_file):
|
453 |
+
raise RuntimeError(f"{config_file} does not exist")
|
454 |
+
with open(config_file, "r") as f:
|
455 |
+
config = json.load(f)
|
456 |
+
config["_class_name"] = cls.__name__
|
457 |
+
config["down_block_types"] = [
|
458 |
+
"CrossAttnDownBlock3D",
|
459 |
+
"CrossAttnDownBlock3D",
|
460 |
+
"CrossAttnDownBlock3D",
|
461 |
+
"DownBlock3D"
|
462 |
+
]
|
463 |
+
config["up_block_types"] = [
|
464 |
+
"UpBlock3D",
|
465 |
+
"CrossAttnUpBlock3D",
|
466 |
+
"CrossAttnUpBlock3D",
|
467 |
+
"CrossAttnUpBlock3D"
|
468 |
+
]
|
469 |
+
|
470 |
+
from diffusers.utils import WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME
|
471 |
+
# model = cls.from_config(config)
|
472 |
+
# model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
473 |
+
# if not os.path.isfile(model_file):
|
474 |
+
# raise RuntimeError(f"{model_file} does not exist")
|
475 |
+
# state_dict = torch.load(model_file, map_location="cpu")
|
476 |
+
|
477 |
+
import safetensors
|
478 |
+
model = cls.from_config(config)
|
479 |
+
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
480 |
+
if not os.path.isfile(model_file):
|
481 |
+
model_file = os.path.join(pretrained_model_path, SAFETENSORS_WEIGHTS_NAME)
|
482 |
+
if not os.path.isfile(model_file):
|
483 |
+
raise RuntimeError(f"{model_file} does not exist")
|
484 |
+
else:
|
485 |
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
486 |
+
else:
|
487 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
488 |
+
|
489 |
+
for k, v in model.state_dict().items():
|
490 |
+
if '_temp.' in k or 'camera_embedding' in k or 'class_embedding' in k:
|
491 |
+
state_dict.update({k: v})
|
492 |
+
for k in list(state_dict.keys()):
|
493 |
+
if 'camera_embedding_' in k:
|
494 |
+
v = state_dict.pop(k)
|
495 |
+
model.load_state_dict(state_dict)
|
496 |
+
|
497 |
+
return model
|
2D_Stage/tuneavideo/models/unet_blocks.py
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
# from .attention import Transformer3DModel
|
7 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
8 |
+
|
9 |
+
|
10 |
+
def get_down_block(
|
11 |
+
down_block_type,
|
12 |
+
num_layers,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
temb_channels,
|
16 |
+
add_downsample,
|
17 |
+
resnet_eps,
|
18 |
+
resnet_act_fn,
|
19 |
+
attn_num_head_channels,
|
20 |
+
resnet_groups=None,
|
21 |
+
cross_attention_dim=None,
|
22 |
+
downsample_padding=None,
|
23 |
+
dual_cross_attention=False,
|
24 |
+
use_linear_projection=False,
|
25 |
+
only_cross_attention=False,
|
26 |
+
upcast_attention=False,
|
27 |
+
resnet_time_scale_shift="default",
|
28 |
+
use_attn_temp=False,
|
29 |
+
):
|
30 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
31 |
+
if down_block_type == "DownBlock3D":
|
32 |
+
return DownBlock3D(
|
33 |
+
num_layers=num_layers,
|
34 |
+
in_channels=in_channels,
|
35 |
+
out_channels=out_channels,
|
36 |
+
temb_channels=temb_channels,
|
37 |
+
add_downsample=add_downsample,
|
38 |
+
resnet_eps=resnet_eps,
|
39 |
+
resnet_act_fn=resnet_act_fn,
|
40 |
+
resnet_groups=resnet_groups,
|
41 |
+
downsample_padding=downsample_padding,
|
42 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
43 |
+
)
|
44 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
45 |
+
if cross_attention_dim is None:
|
46 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
47 |
+
return CrossAttnDownBlock3D(
|
48 |
+
num_layers=num_layers,
|
49 |
+
in_channels=in_channels,
|
50 |
+
out_channels=out_channels,
|
51 |
+
temb_channels=temb_channels,
|
52 |
+
add_downsample=add_downsample,
|
53 |
+
resnet_eps=resnet_eps,
|
54 |
+
resnet_act_fn=resnet_act_fn,
|
55 |
+
resnet_groups=resnet_groups,
|
56 |
+
downsample_padding=downsample_padding,
|
57 |
+
cross_attention_dim=cross_attention_dim,
|
58 |
+
attn_num_head_channels=attn_num_head_channels,
|
59 |
+
dual_cross_attention=dual_cross_attention,
|
60 |
+
use_linear_projection=use_linear_projection,
|
61 |
+
only_cross_attention=only_cross_attention,
|
62 |
+
upcast_attention=upcast_attention,
|
63 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
64 |
+
use_attn_temp=use_attn_temp,
|
65 |
+
)
|
66 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
67 |
+
|
68 |
+
|
69 |
+
def get_up_block(
|
70 |
+
up_block_type,
|
71 |
+
num_layers,
|
72 |
+
in_channels,
|
73 |
+
out_channels,
|
74 |
+
prev_output_channel,
|
75 |
+
temb_channels,
|
76 |
+
add_upsample,
|
77 |
+
resnet_eps,
|
78 |
+
resnet_act_fn,
|
79 |
+
attn_num_head_channels,
|
80 |
+
resnet_groups=None,
|
81 |
+
cross_attention_dim=None,
|
82 |
+
dual_cross_attention=False,
|
83 |
+
use_linear_projection=False,
|
84 |
+
only_cross_attention=False,
|
85 |
+
upcast_attention=False,
|
86 |
+
resnet_time_scale_shift="default",
|
87 |
+
use_attn_temp=False,
|
88 |
+
):
|
89 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
90 |
+
if up_block_type == "UpBlock3D":
|
91 |
+
return UpBlock3D(
|
92 |
+
num_layers=num_layers,
|
93 |
+
in_channels=in_channels,
|
94 |
+
out_channels=out_channels,
|
95 |
+
prev_output_channel=prev_output_channel,
|
96 |
+
temb_channels=temb_channels,
|
97 |
+
add_upsample=add_upsample,
|
98 |
+
resnet_eps=resnet_eps,
|
99 |
+
resnet_act_fn=resnet_act_fn,
|
100 |
+
resnet_groups=resnet_groups,
|
101 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
102 |
+
)
|
103 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
104 |
+
if cross_attention_dim is None:
|
105 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
106 |
+
return CrossAttnUpBlock3D(
|
107 |
+
num_layers=num_layers,
|
108 |
+
in_channels=in_channels,
|
109 |
+
out_channels=out_channels,
|
110 |
+
prev_output_channel=prev_output_channel,
|
111 |
+
temb_channels=temb_channels,
|
112 |
+
add_upsample=add_upsample,
|
113 |
+
resnet_eps=resnet_eps,
|
114 |
+
resnet_act_fn=resnet_act_fn,
|
115 |
+
resnet_groups=resnet_groups,
|
116 |
+
cross_attention_dim=cross_attention_dim,
|
117 |
+
attn_num_head_channels=attn_num_head_channels,
|
118 |
+
dual_cross_attention=dual_cross_attention,
|
119 |
+
use_linear_projection=use_linear_projection,
|
120 |
+
only_cross_attention=only_cross_attention,
|
121 |
+
upcast_attention=upcast_attention,
|
122 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
123 |
+
use_attn_temp=use_attn_temp,
|
124 |
+
)
|
125 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
126 |
+
|
127 |
+
|
128 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
in_channels: int,
|
132 |
+
temb_channels: int,
|
133 |
+
dropout: float = 0.0,
|
134 |
+
num_layers: int = 1,
|
135 |
+
resnet_eps: float = 1e-6,
|
136 |
+
resnet_time_scale_shift: str = "default",
|
137 |
+
resnet_act_fn: str = "swish",
|
138 |
+
resnet_groups: int = 32,
|
139 |
+
resnet_pre_norm: bool = True,
|
140 |
+
attn_num_head_channels=1,
|
141 |
+
output_scale_factor=1.0,
|
142 |
+
cross_attention_dim=1280,
|
143 |
+
dual_cross_attention=False,
|
144 |
+
use_linear_projection=False,
|
145 |
+
upcast_attention=False,
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
self.has_cross_attention = True
|
150 |
+
self.attn_num_head_channels = attn_num_head_channels
|
151 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
152 |
+
|
153 |
+
# there is always at least one resnet
|
154 |
+
resnets = [
|
155 |
+
ResnetBlock3D(
|
156 |
+
in_channels=in_channels,
|
157 |
+
out_channels=in_channels,
|
158 |
+
temb_channels=temb_channels,
|
159 |
+
eps=resnet_eps,
|
160 |
+
groups=resnet_groups,
|
161 |
+
dropout=dropout,
|
162 |
+
time_embedding_norm=resnet_time_scale_shift,
|
163 |
+
non_linearity=resnet_act_fn,
|
164 |
+
output_scale_factor=output_scale_factor,
|
165 |
+
pre_norm=resnet_pre_norm,
|
166 |
+
)
|
167 |
+
]
|
168 |
+
attentions = []
|
169 |
+
|
170 |
+
for _ in range(num_layers):
|
171 |
+
if dual_cross_attention:
|
172 |
+
raise NotImplementedError
|
173 |
+
attentions.append(
|
174 |
+
Transformer3DModel(
|
175 |
+
attn_num_head_channels,
|
176 |
+
in_channels // attn_num_head_channels,
|
177 |
+
in_channels=in_channels,
|
178 |
+
num_layers=1,
|
179 |
+
cross_attention_dim=cross_attention_dim,
|
180 |
+
norm_num_groups=resnet_groups,
|
181 |
+
use_linear_projection=use_linear_projection,
|
182 |
+
upcast_attention=upcast_attention,
|
183 |
+
)
|
184 |
+
)
|
185 |
+
resnets.append(
|
186 |
+
ResnetBlock3D(
|
187 |
+
in_channels=in_channels,
|
188 |
+
out_channels=in_channels,
|
189 |
+
temb_channels=temb_channels,
|
190 |
+
eps=resnet_eps,
|
191 |
+
groups=resnet_groups,
|
192 |
+
dropout=dropout,
|
193 |
+
time_embedding_norm=resnet_time_scale_shift,
|
194 |
+
non_linearity=resnet_act_fn,
|
195 |
+
output_scale_factor=output_scale_factor,
|
196 |
+
pre_norm=resnet_pre_norm,
|
197 |
+
)
|
198 |
+
)
|
199 |
+
|
200 |
+
self.attentions = nn.ModuleList(attentions)
|
201 |
+
self.resnets = nn.ModuleList(resnets)
|
202 |
+
|
203 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
204 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
205 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
206 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
207 |
+
hidden_states = resnet(hidden_states, temb)
|
208 |
+
|
209 |
+
return hidden_states
|
210 |
+
|
211 |
+
|
212 |
+
class CrossAttnDownBlock3D(nn.Module):
|
213 |
+
def __init__(
|
214 |
+
self,
|
215 |
+
in_channels: int,
|
216 |
+
out_channels: int,
|
217 |
+
temb_channels: int,
|
218 |
+
dropout: float = 0.0,
|
219 |
+
num_layers: int = 1,
|
220 |
+
resnet_eps: float = 1e-6,
|
221 |
+
resnet_time_scale_shift: str = "default",
|
222 |
+
resnet_act_fn: str = "swish",
|
223 |
+
resnet_groups: int = 32,
|
224 |
+
resnet_pre_norm: bool = True,
|
225 |
+
attn_num_head_channels=1,
|
226 |
+
cross_attention_dim=1280,
|
227 |
+
output_scale_factor=1.0,
|
228 |
+
downsample_padding=1,
|
229 |
+
add_downsample=True,
|
230 |
+
dual_cross_attention=False,
|
231 |
+
use_linear_projection=False,
|
232 |
+
only_cross_attention=False,
|
233 |
+
upcast_attention=False,
|
234 |
+
use_attn_temp=False,
|
235 |
+
):
|
236 |
+
super().__init__()
|
237 |
+
resnets = []
|
238 |
+
attentions = []
|
239 |
+
|
240 |
+
self.has_cross_attention = True
|
241 |
+
self.attn_num_head_channels = attn_num_head_channels
|
242 |
+
|
243 |
+
for i in range(num_layers):
|
244 |
+
in_channels = in_channels if i == 0 else out_channels
|
245 |
+
resnets.append(
|
246 |
+
ResnetBlock3D(
|
247 |
+
in_channels=in_channels,
|
248 |
+
out_channels=out_channels,
|
249 |
+
temb_channels=temb_channels,
|
250 |
+
eps=resnet_eps,
|
251 |
+
groups=resnet_groups,
|
252 |
+
dropout=dropout,
|
253 |
+
time_embedding_norm=resnet_time_scale_shift,
|
254 |
+
non_linearity=resnet_act_fn,
|
255 |
+
output_scale_factor=output_scale_factor,
|
256 |
+
pre_norm=resnet_pre_norm,
|
257 |
+
)
|
258 |
+
)
|
259 |
+
if dual_cross_attention:
|
260 |
+
raise NotImplementedError
|
261 |
+
attentions.append(
|
262 |
+
Transformer3DModel(
|
263 |
+
attn_num_head_channels,
|
264 |
+
out_channels // attn_num_head_channels,
|
265 |
+
in_channels=out_channels,
|
266 |
+
num_layers=1,
|
267 |
+
cross_attention_dim=cross_attention_dim,
|
268 |
+
norm_num_groups=resnet_groups,
|
269 |
+
use_linear_projection=use_linear_projection,
|
270 |
+
only_cross_attention=only_cross_attention,
|
271 |
+
upcast_attention=upcast_attention,
|
272 |
+
use_attn_temp=use_attn_temp,
|
273 |
+
)
|
274 |
+
)
|
275 |
+
self.attentions = nn.ModuleList(attentions)
|
276 |
+
self.resnets = nn.ModuleList(resnets)
|
277 |
+
|
278 |
+
if add_downsample:
|
279 |
+
self.downsamplers = nn.ModuleList(
|
280 |
+
[
|
281 |
+
Downsample3D(
|
282 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
283 |
+
)
|
284 |
+
]
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
self.downsamplers = None
|
288 |
+
|
289 |
+
self.gradient_checkpointing = False
|
290 |
+
|
291 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
292 |
+
output_states = ()
|
293 |
+
|
294 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
295 |
+
if self.training and self.gradient_checkpointing:
|
296 |
+
|
297 |
+
def create_custom_forward(module, return_dict=None):
|
298 |
+
def custom_forward(*inputs):
|
299 |
+
if return_dict is not None:
|
300 |
+
return module(*inputs, return_dict=return_dict)
|
301 |
+
else:
|
302 |
+
return module(*inputs)
|
303 |
+
|
304 |
+
return custom_forward
|
305 |
+
|
306 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
307 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
308 |
+
create_custom_forward(attn, return_dict=False),
|
309 |
+
hidden_states,
|
310 |
+
encoder_hidden_states,
|
311 |
+
)[0]
|
312 |
+
else:
|
313 |
+
hidden_states = resnet(hidden_states, temb)
|
314 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
315 |
+
|
316 |
+
output_states += (hidden_states,)
|
317 |
+
|
318 |
+
if self.downsamplers is not None:
|
319 |
+
for downsampler in self.downsamplers:
|
320 |
+
hidden_states = downsampler(hidden_states)
|
321 |
+
|
322 |
+
output_states += (hidden_states,)
|
323 |
+
|
324 |
+
return hidden_states, output_states
|
325 |
+
|
326 |
+
|
327 |
+
class DownBlock3D(nn.Module):
|
328 |
+
def __init__(
|
329 |
+
self,
|
330 |
+
in_channels: int,
|
331 |
+
out_channels: int,
|
332 |
+
temb_channels: int,
|
333 |
+
dropout: float = 0.0,
|
334 |
+
num_layers: int = 1,
|
335 |
+
resnet_eps: float = 1e-6,
|
336 |
+
resnet_time_scale_shift: str = "default",
|
337 |
+
resnet_act_fn: str = "swish",
|
338 |
+
resnet_groups: int = 32,
|
339 |
+
resnet_pre_norm: bool = True,
|
340 |
+
output_scale_factor=1.0,
|
341 |
+
add_downsample=True,
|
342 |
+
downsample_padding=1,
|
343 |
+
):
|
344 |
+
super().__init__()
|
345 |
+
resnets = []
|
346 |
+
|
347 |
+
for i in range(num_layers):
|
348 |
+
in_channels = in_channels if i == 0 else out_channels
|
349 |
+
resnets.append(
|
350 |
+
ResnetBlock3D(
|
351 |
+
in_channels=in_channels,
|
352 |
+
out_channels=out_channels,
|
353 |
+
temb_channels=temb_channels,
|
354 |
+
eps=resnet_eps,
|
355 |
+
groups=resnet_groups,
|
356 |
+
dropout=dropout,
|
357 |
+
time_embedding_norm=resnet_time_scale_shift,
|
358 |
+
non_linearity=resnet_act_fn,
|
359 |
+
output_scale_factor=output_scale_factor,
|
360 |
+
pre_norm=resnet_pre_norm,
|
361 |
+
)
|
362 |
+
)
|
363 |
+
|
364 |
+
self.resnets = nn.ModuleList(resnets)
|
365 |
+
|
366 |
+
if add_downsample:
|
367 |
+
self.downsamplers = nn.ModuleList(
|
368 |
+
[
|
369 |
+
Downsample3D(
|
370 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
371 |
+
)
|
372 |
+
]
|
373 |
+
)
|
374 |
+
else:
|
375 |
+
self.downsamplers = None
|
376 |
+
|
377 |
+
self.gradient_checkpointing = False
|
378 |
+
|
379 |
+
def forward(self, hidden_states, temb=None):
|
380 |
+
output_states = ()
|
381 |
+
|
382 |
+
for resnet in self.resnets:
|
383 |
+
if self.training and self.gradient_checkpointing:
|
384 |
+
|
385 |
+
def create_custom_forward(module):
|
386 |
+
def custom_forward(*inputs):
|
387 |
+
return module(*inputs)
|
388 |
+
|
389 |
+
return custom_forward
|
390 |
+
|
391 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
392 |
+
else:
|
393 |
+
hidden_states = resnet(hidden_states, temb)
|
394 |
+
|
395 |
+
output_states += (hidden_states,)
|
396 |
+
|
397 |
+
if self.downsamplers is not None:
|
398 |
+
for downsampler in self.downsamplers:
|
399 |
+
hidden_states = downsampler(hidden_states)
|
400 |
+
|
401 |
+
output_states += (hidden_states,)
|
402 |
+
|
403 |
+
return hidden_states, output_states
|
404 |
+
|
405 |
+
|
406 |
+
class CrossAttnUpBlock3D(nn.Module):
|
407 |
+
def __init__(
|
408 |
+
self,
|
409 |
+
in_channels: int,
|
410 |
+
out_channels: int,
|
411 |
+
prev_output_channel: int,
|
412 |
+
temb_channels: int,
|
413 |
+
dropout: float = 0.0,
|
414 |
+
num_layers: int = 1,
|
415 |
+
resnet_eps: float = 1e-6,
|
416 |
+
resnet_time_scale_shift: str = "default",
|
417 |
+
resnet_act_fn: str = "swish",
|
418 |
+
resnet_groups: int = 32,
|
419 |
+
resnet_pre_norm: bool = True,
|
420 |
+
attn_num_head_channels=1,
|
421 |
+
cross_attention_dim=1280,
|
422 |
+
output_scale_factor=1.0,
|
423 |
+
add_upsample=True,
|
424 |
+
dual_cross_attention=False,
|
425 |
+
use_linear_projection=False,
|
426 |
+
only_cross_attention=False,
|
427 |
+
upcast_attention=False,
|
428 |
+
use_attn_temp=False,
|
429 |
+
):
|
430 |
+
super().__init__()
|
431 |
+
resnets = []
|
432 |
+
attentions = []
|
433 |
+
|
434 |
+
self.has_cross_attention = True
|
435 |
+
self.attn_num_head_channels = attn_num_head_channels
|
436 |
+
|
437 |
+
for i in range(num_layers):
|
438 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
439 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
440 |
+
|
441 |
+
resnets.append(
|
442 |
+
ResnetBlock3D(
|
443 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
444 |
+
out_channels=out_channels,
|
445 |
+
temb_channels=temb_channels,
|
446 |
+
eps=resnet_eps,
|
447 |
+
groups=resnet_groups,
|
448 |
+
dropout=dropout,
|
449 |
+
time_embedding_norm=resnet_time_scale_shift,
|
450 |
+
non_linearity=resnet_act_fn,
|
451 |
+
output_scale_factor=output_scale_factor,
|
452 |
+
pre_norm=resnet_pre_norm,
|
453 |
+
)
|
454 |
+
)
|
455 |
+
if dual_cross_attention:
|
456 |
+
raise NotImplementedError
|
457 |
+
attentions.append(
|
458 |
+
Transformer3DModel(
|
459 |
+
attn_num_head_channels,
|
460 |
+
out_channels // attn_num_head_channels,
|
461 |
+
in_channels=out_channels,
|
462 |
+
num_layers=1,
|
463 |
+
cross_attention_dim=cross_attention_dim,
|
464 |
+
norm_num_groups=resnet_groups,
|
465 |
+
use_linear_projection=use_linear_projection,
|
466 |
+
only_cross_attention=only_cross_attention,
|
467 |
+
upcast_attention=upcast_attention,
|
468 |
+
use_attn_temp=use_attn_temp,
|
469 |
+
)
|
470 |
+
)
|
471 |
+
|
472 |
+
self.attentions = nn.ModuleList(attentions)
|
473 |
+
self.resnets = nn.ModuleList(resnets)
|
474 |
+
|
475 |
+
if add_upsample:
|
476 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
477 |
+
else:
|
478 |
+
self.upsamplers = None
|
479 |
+
|
480 |
+
self.gradient_checkpointing = False
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
hidden_states,
|
485 |
+
res_hidden_states_tuple,
|
486 |
+
temb=None,
|
487 |
+
encoder_hidden_states=None,
|
488 |
+
upsample_size=None,
|
489 |
+
attention_mask=None,
|
490 |
+
):
|
491 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
492 |
+
# pop res hidden states
|
493 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
494 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
495 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
496 |
+
|
497 |
+
if self.training and self.gradient_checkpointing:
|
498 |
+
|
499 |
+
def create_custom_forward(module, return_dict=None):
|
500 |
+
def custom_forward(*inputs):
|
501 |
+
if return_dict is not None:
|
502 |
+
return module(*inputs, return_dict=return_dict)
|
503 |
+
else:
|
504 |
+
return module(*inputs)
|
505 |
+
|
506 |
+
return custom_forward
|
507 |
+
|
508 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
509 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
510 |
+
create_custom_forward(attn, return_dict=False),
|
511 |
+
hidden_states,
|
512 |
+
encoder_hidden_states,
|
513 |
+
)[0]
|
514 |
+
else:
|
515 |
+
hidden_states = resnet(hidden_states, temb)
|
516 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
517 |
+
|
518 |
+
if self.upsamplers is not None:
|
519 |
+
for upsampler in self.upsamplers:
|
520 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
521 |
+
|
522 |
+
return hidden_states
|
523 |
+
|
524 |
+
|
525 |
+
class UpBlock3D(nn.Module):
|
526 |
+
def __init__(
|
527 |
+
self,
|
528 |
+
in_channels: int,
|
529 |
+
prev_output_channel: int,
|
530 |
+
out_channels: int,
|
531 |
+
temb_channels: int,
|
532 |
+
dropout: float = 0.0,
|
533 |
+
num_layers: int = 1,
|
534 |
+
resnet_eps: float = 1e-6,
|
535 |
+
resnet_time_scale_shift: str = "default",
|
536 |
+
resnet_act_fn: str = "swish",
|
537 |
+
resnet_groups: int = 32,
|
538 |
+
resnet_pre_norm: bool = True,
|
539 |
+
output_scale_factor=1.0,
|
540 |
+
add_upsample=True,
|
541 |
+
):
|
542 |
+
super().__init__()
|
543 |
+
resnets = []
|
544 |
+
|
545 |
+
for i in range(num_layers):
|
546 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
547 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
548 |
+
|
549 |
+
resnets.append(
|
550 |
+
ResnetBlock3D(
|
551 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
552 |
+
out_channels=out_channels,
|
553 |
+
temb_channels=temb_channels,
|
554 |
+
eps=resnet_eps,
|
555 |
+
groups=resnet_groups,
|
556 |
+
dropout=dropout,
|
557 |
+
time_embedding_norm=resnet_time_scale_shift,
|
558 |
+
non_linearity=resnet_act_fn,
|
559 |
+
output_scale_factor=output_scale_factor,
|
560 |
+
pre_norm=resnet_pre_norm,
|
561 |
+
)
|
562 |
+
)
|
563 |
+
|
564 |
+
self.resnets = nn.ModuleList(resnets)
|
565 |
+
|
566 |
+
if add_upsample:
|
567 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
568 |
+
else:
|
569 |
+
self.upsamplers = None
|
570 |
+
|
571 |
+
self.gradient_checkpointing = False
|
572 |
+
|
573 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
574 |
+
for resnet in self.resnets:
|
575 |
+
# pop res hidden states
|
576 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
577 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
578 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
579 |
+
|
580 |
+
if self.training and self.gradient_checkpointing:
|
581 |
+
|
582 |
+
def create_custom_forward(module):
|
583 |
+
def custom_forward(*inputs):
|
584 |
+
return module(*inputs)
|
585 |
+
|
586 |
+
return custom_forward
|
587 |
+
|
588 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
589 |
+
else:
|
590 |
+
hidden_states = resnet(hidden_states, temb)
|
591 |
+
|
592 |
+
if self.upsamplers is not None:
|
593 |
+
for upsampler in self.upsamplers:
|
594 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
595 |
+
|
596 |
+
return hidden_states
|
2D_Stage/tuneavideo/models/unet_mv2d_blocks.py
ADDED
@@ -0,0 +1,926 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional, Tuple
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.utils import is_torch_version, logging
|
22 |
+
# from diffusers.models.attention import AdaGroupNorm
|
23 |
+
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
24 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
25 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
26 |
+
from tuneavideo.models.transformer_mv2d import TransformerMV2DModel
|
27 |
+
|
28 |
+
from diffusers.models.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D
|
29 |
+
from diffusers.models.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
|
35 |
+
def get_down_block(
|
36 |
+
down_block_type,
|
37 |
+
num_layers,
|
38 |
+
in_channels,
|
39 |
+
out_channels,
|
40 |
+
temb_channels,
|
41 |
+
add_downsample,
|
42 |
+
resnet_eps,
|
43 |
+
resnet_act_fn,
|
44 |
+
transformer_layers_per_block=1,
|
45 |
+
num_attention_heads=None,
|
46 |
+
resnet_groups=None,
|
47 |
+
cross_attention_dim=None,
|
48 |
+
downsample_padding=None,
|
49 |
+
dual_cross_attention=False,
|
50 |
+
use_linear_projection=False,
|
51 |
+
only_cross_attention=False,
|
52 |
+
upcast_attention=False,
|
53 |
+
resnet_time_scale_shift="default",
|
54 |
+
resnet_skip_time_act=False,
|
55 |
+
resnet_out_scale_factor=1.0,
|
56 |
+
cross_attention_norm=None,
|
57 |
+
attention_head_dim=None,
|
58 |
+
downsample_type=None,
|
59 |
+
num_views=1,
|
60 |
+
joint_attention: bool = False,
|
61 |
+
joint_attention_twice: bool = False,
|
62 |
+
multiview_attention: bool = True,
|
63 |
+
cross_domain_attention: bool=False
|
64 |
+
):
|
65 |
+
# If attn head dim is not defined, we default it to the number of heads
|
66 |
+
if attention_head_dim is None:
|
67 |
+
logger.warn(
|
68 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
69 |
+
)
|
70 |
+
attention_head_dim = num_attention_heads
|
71 |
+
|
72 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
73 |
+
if down_block_type == "DownBlock2D":
|
74 |
+
return DownBlock2D(
|
75 |
+
num_layers=num_layers,
|
76 |
+
in_channels=in_channels,
|
77 |
+
out_channels=out_channels,
|
78 |
+
temb_channels=temb_channels,
|
79 |
+
add_downsample=add_downsample,
|
80 |
+
resnet_eps=resnet_eps,
|
81 |
+
resnet_act_fn=resnet_act_fn,
|
82 |
+
resnet_groups=resnet_groups,
|
83 |
+
downsample_padding=downsample_padding,
|
84 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
85 |
+
)
|
86 |
+
elif down_block_type == "ResnetDownsampleBlock2D":
|
87 |
+
return ResnetDownsampleBlock2D(
|
88 |
+
num_layers=num_layers,
|
89 |
+
in_channels=in_channels,
|
90 |
+
out_channels=out_channels,
|
91 |
+
temb_channels=temb_channels,
|
92 |
+
add_downsample=add_downsample,
|
93 |
+
resnet_eps=resnet_eps,
|
94 |
+
resnet_act_fn=resnet_act_fn,
|
95 |
+
resnet_groups=resnet_groups,
|
96 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
97 |
+
skip_time_act=resnet_skip_time_act,
|
98 |
+
output_scale_factor=resnet_out_scale_factor,
|
99 |
+
)
|
100 |
+
elif down_block_type == "AttnDownBlock2D":
|
101 |
+
if add_downsample is False:
|
102 |
+
downsample_type = None
|
103 |
+
else:
|
104 |
+
downsample_type = downsample_type or "conv" # default to 'conv'
|
105 |
+
return AttnDownBlock2D(
|
106 |
+
num_layers=num_layers,
|
107 |
+
in_channels=in_channels,
|
108 |
+
out_channels=out_channels,
|
109 |
+
temb_channels=temb_channels,
|
110 |
+
resnet_eps=resnet_eps,
|
111 |
+
resnet_act_fn=resnet_act_fn,
|
112 |
+
resnet_groups=resnet_groups,
|
113 |
+
downsample_padding=downsample_padding,
|
114 |
+
attention_head_dim=attention_head_dim,
|
115 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
116 |
+
downsample_type=downsample_type,
|
117 |
+
)
|
118 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
119 |
+
if cross_attention_dim is None:
|
120 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
121 |
+
return CrossAttnDownBlock2D(
|
122 |
+
num_layers=num_layers,
|
123 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
124 |
+
in_channels=in_channels,
|
125 |
+
out_channels=out_channels,
|
126 |
+
temb_channels=temb_channels,
|
127 |
+
add_downsample=add_downsample,
|
128 |
+
resnet_eps=resnet_eps,
|
129 |
+
resnet_act_fn=resnet_act_fn,
|
130 |
+
resnet_groups=resnet_groups,
|
131 |
+
downsample_padding=downsample_padding,
|
132 |
+
cross_attention_dim=cross_attention_dim,
|
133 |
+
num_attention_heads=num_attention_heads,
|
134 |
+
dual_cross_attention=dual_cross_attention,
|
135 |
+
use_linear_projection=use_linear_projection,
|
136 |
+
only_cross_attention=only_cross_attention,
|
137 |
+
upcast_attention=upcast_attention,
|
138 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
139 |
+
)
|
140 |
+
# custom MV2D attention block
|
141 |
+
elif down_block_type == "CrossAttnDownBlockMV2D":
|
142 |
+
if cross_attention_dim is None:
|
143 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D")
|
144 |
+
return CrossAttnDownBlockMV2D(
|
145 |
+
num_layers=num_layers,
|
146 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
147 |
+
in_channels=in_channels,
|
148 |
+
out_channels=out_channels,
|
149 |
+
temb_channels=temb_channels,
|
150 |
+
add_downsample=add_downsample,
|
151 |
+
resnet_eps=resnet_eps,
|
152 |
+
resnet_act_fn=resnet_act_fn,
|
153 |
+
resnet_groups=resnet_groups,
|
154 |
+
downsample_padding=downsample_padding,
|
155 |
+
cross_attention_dim=cross_attention_dim,
|
156 |
+
num_attention_heads=num_attention_heads,
|
157 |
+
dual_cross_attention=dual_cross_attention,
|
158 |
+
use_linear_projection=use_linear_projection,
|
159 |
+
only_cross_attention=only_cross_attention,
|
160 |
+
upcast_attention=upcast_attention,
|
161 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
162 |
+
num_views=num_views,
|
163 |
+
joint_attention=joint_attention,
|
164 |
+
joint_attention_twice=joint_attention_twice,
|
165 |
+
multiview_attention=multiview_attention,
|
166 |
+
cross_domain_attention=cross_domain_attention
|
167 |
+
)
|
168 |
+
elif down_block_type == "SimpleCrossAttnDownBlock2D":
|
169 |
+
if cross_attention_dim is None:
|
170 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
|
171 |
+
return SimpleCrossAttnDownBlock2D(
|
172 |
+
num_layers=num_layers,
|
173 |
+
in_channels=in_channels,
|
174 |
+
out_channels=out_channels,
|
175 |
+
temb_channels=temb_channels,
|
176 |
+
add_downsample=add_downsample,
|
177 |
+
resnet_eps=resnet_eps,
|
178 |
+
resnet_act_fn=resnet_act_fn,
|
179 |
+
resnet_groups=resnet_groups,
|
180 |
+
cross_attention_dim=cross_attention_dim,
|
181 |
+
attention_head_dim=attention_head_dim,
|
182 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
183 |
+
skip_time_act=resnet_skip_time_act,
|
184 |
+
output_scale_factor=resnet_out_scale_factor,
|
185 |
+
only_cross_attention=only_cross_attention,
|
186 |
+
cross_attention_norm=cross_attention_norm,
|
187 |
+
)
|
188 |
+
elif down_block_type == "SkipDownBlock2D":
|
189 |
+
return SkipDownBlock2D(
|
190 |
+
num_layers=num_layers,
|
191 |
+
in_channels=in_channels,
|
192 |
+
out_channels=out_channels,
|
193 |
+
temb_channels=temb_channels,
|
194 |
+
add_downsample=add_downsample,
|
195 |
+
resnet_eps=resnet_eps,
|
196 |
+
resnet_act_fn=resnet_act_fn,
|
197 |
+
downsample_padding=downsample_padding,
|
198 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
199 |
+
)
|
200 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
201 |
+
return AttnSkipDownBlock2D(
|
202 |
+
num_layers=num_layers,
|
203 |
+
in_channels=in_channels,
|
204 |
+
out_channels=out_channels,
|
205 |
+
temb_channels=temb_channels,
|
206 |
+
add_downsample=add_downsample,
|
207 |
+
resnet_eps=resnet_eps,
|
208 |
+
resnet_act_fn=resnet_act_fn,
|
209 |
+
attention_head_dim=attention_head_dim,
|
210 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
211 |
+
)
|
212 |
+
elif down_block_type == "DownEncoderBlock2D":
|
213 |
+
return DownEncoderBlock2D(
|
214 |
+
num_layers=num_layers,
|
215 |
+
in_channels=in_channels,
|
216 |
+
out_channels=out_channels,
|
217 |
+
add_downsample=add_downsample,
|
218 |
+
resnet_eps=resnet_eps,
|
219 |
+
resnet_act_fn=resnet_act_fn,
|
220 |
+
resnet_groups=resnet_groups,
|
221 |
+
downsample_padding=downsample_padding,
|
222 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
223 |
+
)
|
224 |
+
elif down_block_type == "AttnDownEncoderBlock2D":
|
225 |
+
return AttnDownEncoderBlock2D(
|
226 |
+
num_layers=num_layers,
|
227 |
+
in_channels=in_channels,
|
228 |
+
out_channels=out_channels,
|
229 |
+
add_downsample=add_downsample,
|
230 |
+
resnet_eps=resnet_eps,
|
231 |
+
resnet_act_fn=resnet_act_fn,
|
232 |
+
resnet_groups=resnet_groups,
|
233 |
+
downsample_padding=downsample_padding,
|
234 |
+
attention_head_dim=attention_head_dim,
|
235 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
236 |
+
)
|
237 |
+
elif down_block_type == "KDownBlock2D":
|
238 |
+
return KDownBlock2D(
|
239 |
+
num_layers=num_layers,
|
240 |
+
in_channels=in_channels,
|
241 |
+
out_channels=out_channels,
|
242 |
+
temb_channels=temb_channels,
|
243 |
+
add_downsample=add_downsample,
|
244 |
+
resnet_eps=resnet_eps,
|
245 |
+
resnet_act_fn=resnet_act_fn,
|
246 |
+
)
|
247 |
+
elif down_block_type == "KCrossAttnDownBlock2D":
|
248 |
+
return KCrossAttnDownBlock2D(
|
249 |
+
num_layers=num_layers,
|
250 |
+
in_channels=in_channels,
|
251 |
+
out_channels=out_channels,
|
252 |
+
temb_channels=temb_channels,
|
253 |
+
add_downsample=add_downsample,
|
254 |
+
resnet_eps=resnet_eps,
|
255 |
+
resnet_act_fn=resnet_act_fn,
|
256 |
+
cross_attention_dim=cross_attention_dim,
|
257 |
+
attention_head_dim=attention_head_dim,
|
258 |
+
add_self_attention=True if not add_downsample else False,
|
259 |
+
)
|
260 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
261 |
+
|
262 |
+
|
263 |
+
def get_up_block(
|
264 |
+
up_block_type,
|
265 |
+
num_layers,
|
266 |
+
in_channels,
|
267 |
+
out_channels,
|
268 |
+
prev_output_channel,
|
269 |
+
temb_channels,
|
270 |
+
add_upsample,
|
271 |
+
resnet_eps,
|
272 |
+
resnet_act_fn,
|
273 |
+
transformer_layers_per_block=1,
|
274 |
+
num_attention_heads=None,
|
275 |
+
resnet_groups=None,
|
276 |
+
cross_attention_dim=None,
|
277 |
+
dual_cross_attention=False,
|
278 |
+
use_linear_projection=False,
|
279 |
+
only_cross_attention=False,
|
280 |
+
upcast_attention=False,
|
281 |
+
resnet_time_scale_shift="default",
|
282 |
+
resnet_skip_time_act=False,
|
283 |
+
resnet_out_scale_factor=1.0,
|
284 |
+
cross_attention_norm=None,
|
285 |
+
attention_head_dim=None,
|
286 |
+
upsample_type=None,
|
287 |
+
num_views=1,
|
288 |
+
joint_attention: bool = False,
|
289 |
+
joint_attention_twice: bool = False,
|
290 |
+
multiview_attention: bool = True,
|
291 |
+
cross_domain_attention: bool=False
|
292 |
+
):
|
293 |
+
# If attn head dim is not defined, we default it to the number of heads
|
294 |
+
if attention_head_dim is None:
|
295 |
+
logger.warn(
|
296 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
297 |
+
)
|
298 |
+
attention_head_dim = num_attention_heads
|
299 |
+
|
300 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
301 |
+
if up_block_type == "UpBlock2D":
|
302 |
+
return UpBlock2D(
|
303 |
+
num_layers=num_layers,
|
304 |
+
in_channels=in_channels,
|
305 |
+
out_channels=out_channels,
|
306 |
+
prev_output_channel=prev_output_channel,
|
307 |
+
temb_channels=temb_channels,
|
308 |
+
add_upsample=add_upsample,
|
309 |
+
resnet_eps=resnet_eps,
|
310 |
+
resnet_act_fn=resnet_act_fn,
|
311 |
+
resnet_groups=resnet_groups,
|
312 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
313 |
+
)
|
314 |
+
elif up_block_type == "ResnetUpsampleBlock2D":
|
315 |
+
return ResnetUpsampleBlock2D(
|
316 |
+
num_layers=num_layers,
|
317 |
+
in_channels=in_channels,
|
318 |
+
out_channels=out_channels,
|
319 |
+
prev_output_channel=prev_output_channel,
|
320 |
+
temb_channels=temb_channels,
|
321 |
+
add_upsample=add_upsample,
|
322 |
+
resnet_eps=resnet_eps,
|
323 |
+
resnet_act_fn=resnet_act_fn,
|
324 |
+
resnet_groups=resnet_groups,
|
325 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
326 |
+
skip_time_act=resnet_skip_time_act,
|
327 |
+
output_scale_factor=resnet_out_scale_factor,
|
328 |
+
)
|
329 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
330 |
+
if cross_attention_dim is None:
|
331 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
332 |
+
return CrossAttnUpBlock2D(
|
333 |
+
num_layers=num_layers,
|
334 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
335 |
+
in_channels=in_channels,
|
336 |
+
out_channels=out_channels,
|
337 |
+
prev_output_channel=prev_output_channel,
|
338 |
+
temb_channels=temb_channels,
|
339 |
+
add_upsample=add_upsample,
|
340 |
+
resnet_eps=resnet_eps,
|
341 |
+
resnet_act_fn=resnet_act_fn,
|
342 |
+
resnet_groups=resnet_groups,
|
343 |
+
cross_attention_dim=cross_attention_dim,
|
344 |
+
num_attention_heads=num_attention_heads,
|
345 |
+
dual_cross_attention=dual_cross_attention,
|
346 |
+
use_linear_projection=use_linear_projection,
|
347 |
+
only_cross_attention=only_cross_attention,
|
348 |
+
upcast_attention=upcast_attention,
|
349 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
350 |
+
)
|
351 |
+
# custom MV2D attention block
|
352 |
+
elif up_block_type == "CrossAttnUpBlockMV2D":
|
353 |
+
if cross_attention_dim is None:
|
354 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D")
|
355 |
+
return CrossAttnUpBlockMV2D(
|
356 |
+
num_layers=num_layers,
|
357 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
358 |
+
in_channels=in_channels,
|
359 |
+
out_channels=out_channels,
|
360 |
+
prev_output_channel=prev_output_channel,
|
361 |
+
temb_channels=temb_channels,
|
362 |
+
add_upsample=add_upsample,
|
363 |
+
resnet_eps=resnet_eps,
|
364 |
+
resnet_act_fn=resnet_act_fn,
|
365 |
+
resnet_groups=resnet_groups,
|
366 |
+
cross_attention_dim=cross_attention_dim,
|
367 |
+
num_attention_heads=num_attention_heads,
|
368 |
+
dual_cross_attention=dual_cross_attention,
|
369 |
+
use_linear_projection=use_linear_projection,
|
370 |
+
only_cross_attention=only_cross_attention,
|
371 |
+
upcast_attention=upcast_attention,
|
372 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
373 |
+
num_views=num_views,
|
374 |
+
joint_attention=joint_attention,
|
375 |
+
joint_attention_twice=joint_attention_twice,
|
376 |
+
multiview_attention=multiview_attention,
|
377 |
+
cross_domain_attention=cross_domain_attention
|
378 |
+
)
|
379 |
+
elif up_block_type == "SimpleCrossAttnUpBlock2D":
|
380 |
+
if cross_attention_dim is None:
|
381 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
|
382 |
+
return SimpleCrossAttnUpBlock2D(
|
383 |
+
num_layers=num_layers,
|
384 |
+
in_channels=in_channels,
|
385 |
+
out_channels=out_channels,
|
386 |
+
prev_output_channel=prev_output_channel,
|
387 |
+
temb_channels=temb_channels,
|
388 |
+
add_upsample=add_upsample,
|
389 |
+
resnet_eps=resnet_eps,
|
390 |
+
resnet_act_fn=resnet_act_fn,
|
391 |
+
resnet_groups=resnet_groups,
|
392 |
+
cross_attention_dim=cross_attention_dim,
|
393 |
+
attention_head_dim=attention_head_dim,
|
394 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
395 |
+
skip_time_act=resnet_skip_time_act,
|
396 |
+
output_scale_factor=resnet_out_scale_factor,
|
397 |
+
only_cross_attention=only_cross_attention,
|
398 |
+
cross_attention_norm=cross_attention_norm,
|
399 |
+
)
|
400 |
+
elif up_block_type == "AttnUpBlock2D":
|
401 |
+
if add_upsample is False:
|
402 |
+
upsample_type = None
|
403 |
+
else:
|
404 |
+
upsample_type = upsample_type or "conv" # default to 'conv'
|
405 |
+
|
406 |
+
return AttnUpBlock2D(
|
407 |
+
num_layers=num_layers,
|
408 |
+
in_channels=in_channels,
|
409 |
+
out_channels=out_channels,
|
410 |
+
prev_output_channel=prev_output_channel,
|
411 |
+
temb_channels=temb_channels,
|
412 |
+
resnet_eps=resnet_eps,
|
413 |
+
resnet_act_fn=resnet_act_fn,
|
414 |
+
resnet_groups=resnet_groups,
|
415 |
+
attention_head_dim=attention_head_dim,
|
416 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
417 |
+
upsample_type=upsample_type,
|
418 |
+
)
|
419 |
+
elif up_block_type == "SkipUpBlock2D":
|
420 |
+
return SkipUpBlock2D(
|
421 |
+
num_layers=num_layers,
|
422 |
+
in_channels=in_channels,
|
423 |
+
out_channels=out_channels,
|
424 |
+
prev_output_channel=prev_output_channel,
|
425 |
+
temb_channels=temb_channels,
|
426 |
+
add_upsample=add_upsample,
|
427 |
+
resnet_eps=resnet_eps,
|
428 |
+
resnet_act_fn=resnet_act_fn,
|
429 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
430 |
+
)
|
431 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
432 |
+
return AttnSkipUpBlock2D(
|
433 |
+
num_layers=num_layers,
|
434 |
+
in_channels=in_channels,
|
435 |
+
out_channels=out_channels,
|
436 |
+
prev_output_channel=prev_output_channel,
|
437 |
+
temb_channels=temb_channels,
|
438 |
+
add_upsample=add_upsample,
|
439 |
+
resnet_eps=resnet_eps,
|
440 |
+
resnet_act_fn=resnet_act_fn,
|
441 |
+
attention_head_dim=attention_head_dim,
|
442 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
443 |
+
)
|
444 |
+
elif up_block_type == "UpDecoderBlock2D":
|
445 |
+
return UpDecoderBlock2D(
|
446 |
+
num_layers=num_layers,
|
447 |
+
in_channels=in_channels,
|
448 |
+
out_channels=out_channels,
|
449 |
+
add_upsample=add_upsample,
|
450 |
+
resnet_eps=resnet_eps,
|
451 |
+
resnet_act_fn=resnet_act_fn,
|
452 |
+
resnet_groups=resnet_groups,
|
453 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
454 |
+
temb_channels=temb_channels,
|
455 |
+
)
|
456 |
+
elif up_block_type == "AttnUpDecoderBlock2D":
|
457 |
+
return AttnUpDecoderBlock2D(
|
458 |
+
num_layers=num_layers,
|
459 |
+
in_channels=in_channels,
|
460 |
+
out_channels=out_channels,
|
461 |
+
add_upsample=add_upsample,
|
462 |
+
resnet_eps=resnet_eps,
|
463 |
+
resnet_act_fn=resnet_act_fn,
|
464 |
+
resnet_groups=resnet_groups,
|
465 |
+
attention_head_dim=attention_head_dim,
|
466 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
467 |
+
temb_channels=temb_channels,
|
468 |
+
)
|
469 |
+
elif up_block_type == "KUpBlock2D":
|
470 |
+
return KUpBlock2D(
|
471 |
+
num_layers=num_layers,
|
472 |
+
in_channels=in_channels,
|
473 |
+
out_channels=out_channels,
|
474 |
+
temb_channels=temb_channels,
|
475 |
+
add_upsample=add_upsample,
|
476 |
+
resnet_eps=resnet_eps,
|
477 |
+
resnet_act_fn=resnet_act_fn,
|
478 |
+
)
|
479 |
+
elif up_block_type == "KCrossAttnUpBlock2D":
|
480 |
+
return KCrossAttnUpBlock2D(
|
481 |
+
num_layers=num_layers,
|
482 |
+
in_channels=in_channels,
|
483 |
+
out_channels=out_channels,
|
484 |
+
temb_channels=temb_channels,
|
485 |
+
add_upsample=add_upsample,
|
486 |
+
resnet_eps=resnet_eps,
|
487 |
+
resnet_act_fn=resnet_act_fn,
|
488 |
+
cross_attention_dim=cross_attention_dim,
|
489 |
+
attention_head_dim=attention_head_dim,
|
490 |
+
)
|
491 |
+
|
492 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
493 |
+
|
494 |
+
|
495 |
+
class UNetMidBlockMV2DCrossAttn(nn.Module):
|
496 |
+
def __init__(
|
497 |
+
self,
|
498 |
+
in_channels: int,
|
499 |
+
temb_channels: int,
|
500 |
+
dropout: float = 0.0,
|
501 |
+
num_layers: int = 1,
|
502 |
+
transformer_layers_per_block: int = 1,
|
503 |
+
resnet_eps: float = 1e-6,
|
504 |
+
resnet_time_scale_shift: str = "default",
|
505 |
+
resnet_act_fn: str = "swish",
|
506 |
+
resnet_groups: int = 32,
|
507 |
+
resnet_pre_norm: bool = True,
|
508 |
+
num_attention_heads=1,
|
509 |
+
output_scale_factor=1.0,
|
510 |
+
cross_attention_dim=1280,
|
511 |
+
dual_cross_attention=False,
|
512 |
+
use_linear_projection=False,
|
513 |
+
upcast_attention=False,
|
514 |
+
num_views: int = 1,
|
515 |
+
joint_attention: bool = False,
|
516 |
+
joint_attention_twice: bool = False,
|
517 |
+
multiview_attention: bool = True,
|
518 |
+
cross_domain_attention: bool=False
|
519 |
+
):
|
520 |
+
super().__init__()
|
521 |
+
|
522 |
+
self.has_cross_attention = True
|
523 |
+
self.num_attention_heads = num_attention_heads
|
524 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
525 |
+
|
526 |
+
# there is always at least one resnet
|
527 |
+
resnets = [
|
528 |
+
ResnetBlock2D(
|
529 |
+
in_channels=in_channels,
|
530 |
+
out_channels=in_channels,
|
531 |
+
temb_channels=temb_channels,
|
532 |
+
eps=resnet_eps,
|
533 |
+
groups=resnet_groups,
|
534 |
+
dropout=dropout,
|
535 |
+
time_embedding_norm=resnet_time_scale_shift,
|
536 |
+
non_linearity=resnet_act_fn,
|
537 |
+
output_scale_factor=output_scale_factor,
|
538 |
+
pre_norm=resnet_pre_norm,
|
539 |
+
)
|
540 |
+
]
|
541 |
+
attentions = []
|
542 |
+
|
543 |
+
for _ in range(num_layers):
|
544 |
+
if not dual_cross_attention:
|
545 |
+
attentions.append(
|
546 |
+
TransformerMV2DModel(
|
547 |
+
num_attention_heads,
|
548 |
+
in_channels // num_attention_heads,
|
549 |
+
in_channels=in_channels,
|
550 |
+
num_layers=transformer_layers_per_block,
|
551 |
+
cross_attention_dim=cross_attention_dim,
|
552 |
+
norm_num_groups=resnet_groups,
|
553 |
+
use_linear_projection=use_linear_projection,
|
554 |
+
upcast_attention=upcast_attention,
|
555 |
+
num_views=num_views,
|
556 |
+
joint_attention=joint_attention,
|
557 |
+
joint_attention_twice=joint_attention_twice,
|
558 |
+
multiview_attention=multiview_attention,
|
559 |
+
cross_domain_attention=cross_domain_attention
|
560 |
+
)
|
561 |
+
)
|
562 |
+
else:
|
563 |
+
raise NotImplementedError
|
564 |
+
resnets.append(
|
565 |
+
ResnetBlock2D(
|
566 |
+
in_channels=in_channels,
|
567 |
+
out_channels=in_channels,
|
568 |
+
temb_channels=temb_channels,
|
569 |
+
eps=resnet_eps,
|
570 |
+
groups=resnet_groups,
|
571 |
+
dropout=dropout,
|
572 |
+
time_embedding_norm=resnet_time_scale_shift,
|
573 |
+
non_linearity=resnet_act_fn,
|
574 |
+
output_scale_factor=output_scale_factor,
|
575 |
+
pre_norm=resnet_pre_norm,
|
576 |
+
)
|
577 |
+
)
|
578 |
+
|
579 |
+
self.attentions = nn.ModuleList(attentions)
|
580 |
+
self.resnets = nn.ModuleList(resnets)
|
581 |
+
|
582 |
+
def forward(
|
583 |
+
self,
|
584 |
+
hidden_states: torch.FloatTensor,
|
585 |
+
temb: Optional[torch.FloatTensor] = None,
|
586 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
587 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
588 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
589 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
590 |
+
) -> torch.FloatTensor:
|
591 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
592 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
593 |
+
hidden_states = attn(
|
594 |
+
hidden_states,
|
595 |
+
encoder_hidden_states=encoder_hidden_states,
|
596 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
597 |
+
attention_mask=attention_mask,
|
598 |
+
encoder_attention_mask=encoder_attention_mask,
|
599 |
+
return_dict=False,
|
600 |
+
)[0]
|
601 |
+
hidden_states = resnet(hidden_states, temb)
|
602 |
+
|
603 |
+
return hidden_states
|
604 |
+
|
605 |
+
|
606 |
+
class CrossAttnUpBlockMV2D(nn.Module):
|
607 |
+
def __init__(
|
608 |
+
self,
|
609 |
+
in_channels: int,
|
610 |
+
out_channels: int,
|
611 |
+
prev_output_channel: int,
|
612 |
+
temb_channels: int,
|
613 |
+
dropout: float = 0.0,
|
614 |
+
num_layers: int = 1,
|
615 |
+
transformer_layers_per_block: int = 1,
|
616 |
+
resnet_eps: float = 1e-6,
|
617 |
+
resnet_time_scale_shift: str = "default",
|
618 |
+
resnet_act_fn: str = "swish",
|
619 |
+
resnet_groups: int = 32,
|
620 |
+
resnet_pre_norm: bool = True,
|
621 |
+
num_attention_heads=1,
|
622 |
+
cross_attention_dim=1280,
|
623 |
+
output_scale_factor=1.0,
|
624 |
+
add_upsample=True,
|
625 |
+
dual_cross_attention=False,
|
626 |
+
use_linear_projection=False,
|
627 |
+
only_cross_attention=False,
|
628 |
+
upcast_attention=False,
|
629 |
+
num_views: int = 1,
|
630 |
+
joint_attention: bool = False,
|
631 |
+
joint_attention_twice: bool = False,
|
632 |
+
multiview_attention: bool = True,
|
633 |
+
cross_domain_attention: bool=False
|
634 |
+
):
|
635 |
+
super().__init__()
|
636 |
+
resnets = []
|
637 |
+
attentions = []
|
638 |
+
|
639 |
+
self.has_cross_attention = True
|
640 |
+
self.num_attention_heads = num_attention_heads
|
641 |
+
|
642 |
+
for i in range(num_layers):
|
643 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
644 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
645 |
+
|
646 |
+
resnets.append(
|
647 |
+
ResnetBlock2D(
|
648 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
649 |
+
out_channels=out_channels,
|
650 |
+
temb_channels=temb_channels,
|
651 |
+
eps=resnet_eps,
|
652 |
+
groups=resnet_groups,
|
653 |
+
dropout=dropout,
|
654 |
+
time_embedding_norm=resnet_time_scale_shift,
|
655 |
+
non_linearity=resnet_act_fn,
|
656 |
+
output_scale_factor=output_scale_factor,
|
657 |
+
pre_norm=resnet_pre_norm,
|
658 |
+
)
|
659 |
+
)
|
660 |
+
if not dual_cross_attention:
|
661 |
+
attentions.append(
|
662 |
+
TransformerMV2DModel(
|
663 |
+
num_attention_heads,
|
664 |
+
out_channels // num_attention_heads,
|
665 |
+
in_channels=out_channels,
|
666 |
+
num_layers=transformer_layers_per_block,
|
667 |
+
cross_attention_dim=cross_attention_dim,
|
668 |
+
norm_num_groups=resnet_groups,
|
669 |
+
use_linear_projection=use_linear_projection,
|
670 |
+
only_cross_attention=only_cross_attention,
|
671 |
+
upcast_attention=upcast_attention,
|
672 |
+
num_views=num_views,
|
673 |
+
joint_attention=joint_attention,
|
674 |
+
joint_attention_twice=joint_attention_twice,
|
675 |
+
multiview_attention=multiview_attention,
|
676 |
+
cross_domain_attention=cross_domain_attention
|
677 |
+
)
|
678 |
+
)
|
679 |
+
else:
|
680 |
+
raise NotImplementedError
|
681 |
+
self.attentions = nn.ModuleList(attentions)
|
682 |
+
self.resnets = nn.ModuleList(resnets)
|
683 |
+
|
684 |
+
if add_upsample:
|
685 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
686 |
+
else:
|
687 |
+
self.upsamplers = None
|
688 |
+
if num_views == 4:
|
689 |
+
self.gradient_checkpointing = False
|
690 |
+
else:
|
691 |
+
self.gradient_checkpointing = False
|
692 |
+
|
693 |
+
def forward(
|
694 |
+
self,
|
695 |
+
hidden_states: torch.FloatTensor,
|
696 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
697 |
+
temb: Optional[torch.FloatTensor] = None,
|
698 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
699 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
700 |
+
upsample_size: Optional[int] = None,
|
701 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
702 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
703 |
+
):
|
704 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
705 |
+
# pop res hidden states
|
706 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
707 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
708 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
709 |
+
|
710 |
+
if self.training and self.gradient_checkpointing:
|
711 |
+
|
712 |
+
def create_custom_forward(module, return_dict=None):
|
713 |
+
def custom_forward(*inputs):
|
714 |
+
if return_dict is not None:
|
715 |
+
return module(*inputs, return_dict=return_dict)
|
716 |
+
else:
|
717 |
+
return module(*inputs)
|
718 |
+
|
719 |
+
return custom_forward
|
720 |
+
|
721 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
722 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
723 |
+
create_custom_forward(resnet),
|
724 |
+
hidden_states,
|
725 |
+
temb,
|
726 |
+
**ckpt_kwargs,
|
727 |
+
)
|
728 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
729 |
+
create_custom_forward(attn, return_dict=False),
|
730 |
+
hidden_states,
|
731 |
+
encoder_hidden_states,
|
732 |
+
None, # timestep
|
733 |
+
None, # class_labels
|
734 |
+
cross_attention_kwargs,
|
735 |
+
attention_mask,
|
736 |
+
encoder_attention_mask,
|
737 |
+
**ckpt_kwargs,
|
738 |
+
)[0]
|
739 |
+
# hidden_states = attn(
|
740 |
+
# hidden_states,
|
741 |
+
# encoder_hidden_states=encoder_hidden_states,
|
742 |
+
# cross_attention_kwargs=cross_attention_kwargs,
|
743 |
+
# attention_mask=attention_mask,
|
744 |
+
# encoder_attention_mask=encoder_attention_mask,
|
745 |
+
# return_dict=False,
|
746 |
+
# )[0]
|
747 |
+
else:
|
748 |
+
hidden_states = resnet(hidden_states, temb)
|
749 |
+
hidden_states = attn(
|
750 |
+
hidden_states,
|
751 |
+
encoder_hidden_states=encoder_hidden_states,
|
752 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
753 |
+
attention_mask=attention_mask,
|
754 |
+
encoder_attention_mask=encoder_attention_mask,
|
755 |
+
return_dict=False,
|
756 |
+
)[0]
|
757 |
+
|
758 |
+
if self.upsamplers is not None:
|
759 |
+
for upsampler in self.upsamplers:
|
760 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
761 |
+
|
762 |
+
return hidden_states
|
763 |
+
|
764 |
+
|
765 |
+
class CrossAttnDownBlockMV2D(nn.Module):
|
766 |
+
def __init__(
|
767 |
+
self,
|
768 |
+
in_channels: int,
|
769 |
+
out_channels: int,
|
770 |
+
temb_channels: int,
|
771 |
+
dropout: float = 0.0,
|
772 |
+
num_layers: int = 1,
|
773 |
+
transformer_layers_per_block: int = 1,
|
774 |
+
resnet_eps: float = 1e-6,
|
775 |
+
resnet_time_scale_shift: str = "default",
|
776 |
+
resnet_act_fn: str = "swish",
|
777 |
+
resnet_groups: int = 32,
|
778 |
+
resnet_pre_norm: bool = True,
|
779 |
+
num_attention_heads=1,
|
780 |
+
cross_attention_dim=1280,
|
781 |
+
output_scale_factor=1.0,
|
782 |
+
downsample_padding=1,
|
783 |
+
add_downsample=True,
|
784 |
+
dual_cross_attention=False,
|
785 |
+
use_linear_projection=False,
|
786 |
+
only_cross_attention=False,
|
787 |
+
upcast_attention=False,
|
788 |
+
num_views: int = 1,
|
789 |
+
joint_attention: bool = False,
|
790 |
+
joint_attention_twice: bool = False,
|
791 |
+
multiview_attention: bool = True,
|
792 |
+
cross_domain_attention: bool=False
|
793 |
+
):
|
794 |
+
super().__init__()
|
795 |
+
resnets = []
|
796 |
+
attentions = []
|
797 |
+
|
798 |
+
self.has_cross_attention = True
|
799 |
+
self.num_attention_heads = num_attention_heads
|
800 |
+
|
801 |
+
for i in range(num_layers):
|
802 |
+
in_channels = in_channels if i == 0 else out_channels
|
803 |
+
resnets.append(
|
804 |
+
ResnetBlock2D(
|
805 |
+
in_channels=in_channels,
|
806 |
+
out_channels=out_channels,
|
807 |
+
temb_channels=temb_channels,
|
808 |
+
eps=resnet_eps,
|
809 |
+
groups=resnet_groups,
|
810 |
+
dropout=dropout,
|
811 |
+
time_embedding_norm=resnet_time_scale_shift,
|
812 |
+
non_linearity=resnet_act_fn,
|
813 |
+
output_scale_factor=output_scale_factor,
|
814 |
+
pre_norm=resnet_pre_norm,
|
815 |
+
)
|
816 |
+
)
|
817 |
+
if not dual_cross_attention:
|
818 |
+
attentions.append(
|
819 |
+
TransformerMV2DModel(
|
820 |
+
num_attention_heads,
|
821 |
+
out_channels // num_attention_heads,
|
822 |
+
in_channels=out_channels,
|
823 |
+
num_layers=transformer_layers_per_block,
|
824 |
+
cross_attention_dim=cross_attention_dim,
|
825 |
+
norm_num_groups=resnet_groups,
|
826 |
+
use_linear_projection=use_linear_projection,
|
827 |
+
only_cross_attention=only_cross_attention,
|
828 |
+
upcast_attention=upcast_attention,
|
829 |
+
num_views=num_views,
|
830 |
+
joint_attention=joint_attention,
|
831 |
+
joint_attention_twice=joint_attention_twice,
|
832 |
+
multiview_attention=multiview_attention,
|
833 |
+
cross_domain_attention=cross_domain_attention
|
834 |
+
)
|
835 |
+
)
|
836 |
+
else:
|
837 |
+
raise NotImplementedError
|
838 |
+
self.attentions = nn.ModuleList(attentions)
|
839 |
+
self.resnets = nn.ModuleList(resnets)
|
840 |
+
|
841 |
+
if add_downsample:
|
842 |
+
self.downsamplers = nn.ModuleList(
|
843 |
+
[
|
844 |
+
Downsample2D(
|
845 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
846 |
+
)
|
847 |
+
]
|
848 |
+
)
|
849 |
+
else:
|
850 |
+
self.downsamplers = None
|
851 |
+
if num_views == 4:
|
852 |
+
self.gradient_checkpointing = False
|
853 |
+
else:
|
854 |
+
self.gradient_checkpointing = False
|
855 |
+
|
856 |
+
def forward(
|
857 |
+
self,
|
858 |
+
hidden_states: torch.FloatTensor,
|
859 |
+
temb: Optional[torch.FloatTensor] = None,
|
860 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
861 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
862 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
863 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
864 |
+
additional_residuals=None,
|
865 |
+
):
|
866 |
+
output_states = ()
|
867 |
+
|
868 |
+
blocks = list(zip(self.resnets, self.attentions))
|
869 |
+
|
870 |
+
for i, (resnet, attn) in enumerate(blocks):
|
871 |
+
if self.training and self.gradient_checkpointing:
|
872 |
+
|
873 |
+
def create_custom_forward(module, return_dict=None):
|
874 |
+
def custom_forward(*inputs):
|
875 |
+
if return_dict is not None:
|
876 |
+
return module(*inputs, return_dict=return_dict)
|
877 |
+
else:
|
878 |
+
return module(*inputs)
|
879 |
+
|
880 |
+
return custom_forward
|
881 |
+
|
882 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
883 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
884 |
+
create_custom_forward(resnet),
|
885 |
+
hidden_states,
|
886 |
+
temb,
|
887 |
+
**ckpt_kwargs,
|
888 |
+
)
|
889 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
890 |
+
create_custom_forward(attn, return_dict=False),
|
891 |
+
hidden_states,
|
892 |
+
encoder_hidden_states,
|
893 |
+
None, # timestep
|
894 |
+
None, # class_labels
|
895 |
+
cross_attention_kwargs,
|
896 |
+
attention_mask,
|
897 |
+
encoder_attention_mask,
|
898 |
+
**ckpt_kwargs,
|
899 |
+
)[0]
|
900 |
+
else:
|
901 |
+
# import ipdb
|
902 |
+
# ipdb.set_trace()
|
903 |
+
hidden_states = resnet(hidden_states, temb)
|
904 |
+
hidden_states = attn(
|
905 |
+
hidden_states,
|
906 |
+
encoder_hidden_states=encoder_hidden_states,
|
907 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
908 |
+
attention_mask=attention_mask,
|
909 |
+
encoder_attention_mask=encoder_attention_mask,
|
910 |
+
return_dict=False,
|
911 |
+
)[0]
|
912 |
+
|
913 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
914 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
915 |
+
hidden_states = hidden_states + additional_residuals
|
916 |
+
|
917 |
+
output_states = output_states + (hidden_states,)
|
918 |
+
|
919 |
+
if self.downsamplers is not None:
|
920 |
+
for downsampler in self.downsamplers:
|
921 |
+
hidden_states = downsampler(hidden_states)
|
922 |
+
|
923 |
+
output_states = output_states + (hidden_states,)
|
924 |
+
|
925 |
+
return hidden_states, output_states
|
926 |
+
|
2D_Stage/tuneavideo/models/unet_mv2d_condition.py
ADDED
@@ -0,0 +1,1509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from einops import rearrange
|
22 |
+
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
26 |
+
from diffusers.utils import BaseOutput, logging
|
27 |
+
from diffusers.models.activations import get_activation
|
28 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
29 |
+
from diffusers.models.embeddings import (
|
30 |
+
GaussianFourierProjection,
|
31 |
+
ImageHintTimeEmbedding,
|
32 |
+
ImageProjection,
|
33 |
+
ImageTimeEmbedding,
|
34 |
+
TextImageProjection,
|
35 |
+
TextImageTimeEmbedding,
|
36 |
+
TextTimeEmbedding,
|
37 |
+
TimestepEmbedding,
|
38 |
+
Timesteps,
|
39 |
+
)
|
40 |
+
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
|
41 |
+
from diffusers.models.unet_2d_blocks import (
|
42 |
+
CrossAttnDownBlock2D,
|
43 |
+
CrossAttnUpBlock2D,
|
44 |
+
DownBlock2D,
|
45 |
+
UNetMidBlock2DCrossAttn,
|
46 |
+
UNetMidBlock2DSimpleCrossAttn,
|
47 |
+
UpBlock2D,
|
48 |
+
)
|
49 |
+
from diffusers.utils import (
|
50 |
+
CONFIG_NAME,
|
51 |
+
DIFFUSERS_CACHE,
|
52 |
+
FLAX_WEIGHTS_NAME,
|
53 |
+
HF_HUB_OFFLINE,
|
54 |
+
SAFETENSORS_WEIGHTS_NAME,
|
55 |
+
WEIGHTS_NAME,
|
56 |
+
_add_variant,
|
57 |
+
_get_model_file,
|
58 |
+
deprecate,
|
59 |
+
is_accelerate_available,
|
60 |
+
is_torch_version,
|
61 |
+
logging,
|
62 |
+
)
|
63 |
+
from diffusers import __version__
|
64 |
+
from tuneavideo.models.unet_mv2d_blocks import (
|
65 |
+
CrossAttnDownBlockMV2D,
|
66 |
+
CrossAttnUpBlockMV2D,
|
67 |
+
UNetMidBlockMV2DCrossAttn,
|
68 |
+
get_down_block,
|
69 |
+
get_up_block,
|
70 |
+
)
|
71 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
72 |
+
from diffusers.utils.import_utils import is_xformers_available
|
73 |
+
from tuneavideo.models.transformer_mv2d import XFormersMVAttnProcessor, MVAttnProcessor
|
74 |
+
from tuneavideo.models.refunet import ReferenceOnlyAttnProc
|
75 |
+
|
76 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class UNetMV2DConditionOutput(BaseOutput):
|
81 |
+
"""
|
82 |
+
The output of [`UNet2DConditionModel`].
|
83 |
+
|
84 |
+
Args:
|
85 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
86 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
87 |
+
"""
|
88 |
+
|
89 |
+
sample: torch.FloatTensor = None
|
90 |
+
|
91 |
+
class UNetMV2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
92 |
+
r"""
|
93 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
94 |
+
shaped output.
|
95 |
+
|
96 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
97 |
+
for all models (such as downloading or saving).
|
98 |
+
|
99 |
+
Parameters:
|
100 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
101 |
+
Height and width of input/output sample.
|
102 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
103 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
104 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
105 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
106 |
+
Whether to flip the sin to cos in the time embedding.
|
107 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
108 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
109 |
+
The tuple of downsample blocks to use.
|
110 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
111 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
112 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
113 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
114 |
+
The tuple of upsample blocks to use.
|
115 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
116 |
+
Whether to include self-attention in the basic transformer blocks, see
|
117 |
+
[`~models.attention.BasicTransformerBlock`].
|
118 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
119 |
+
The tuple of output channels for each block.
|
120 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
121 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
122 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
123 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
124 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
125 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
126 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
127 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
128 |
+
The dimension of the cross attention features.
|
129 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
130 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
131 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
132 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
133 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
134 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
135 |
+
dimension to `cross_attention_dim`.
|
136 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
137 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
138 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
139 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
140 |
+
num_attention_heads (`int`, *optional*):
|
141 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
142 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
143 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
144 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
145 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
146 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
147 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
148 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
149 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
150 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
151 |
+
Dimension for the timestep embeddings.
|
152 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
153 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
154 |
+
class conditioning with `class_embed_type` equal to `None`.
|
155 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
156 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
157 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
158 |
+
An optional override for the dimension of the projected time embedding.
|
159 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
160 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
161 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
162 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
163 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
164 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
165 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
166 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
167 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
168 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
169 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
170 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
171 |
+
embeddings with the class embeddings.
|
172 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
173 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
174 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
175 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
176 |
+
otherwise.
|
177 |
+
"""
|
178 |
+
|
179 |
+
_supports_gradient_checkpointing = True
|
180 |
+
|
181 |
+
@register_to_config
|
182 |
+
def __init__(
|
183 |
+
self,
|
184 |
+
sample_size: Optional[int] = None,
|
185 |
+
in_channels: int = 4,
|
186 |
+
out_channels: int = 4,
|
187 |
+
center_input_sample: bool = False,
|
188 |
+
flip_sin_to_cos: bool = True,
|
189 |
+
freq_shift: int = 0,
|
190 |
+
down_block_types: Tuple[str] = (
|
191 |
+
"CrossAttnDownBlockMV2D",
|
192 |
+
"CrossAttnDownBlockMV2D",
|
193 |
+
"CrossAttnDownBlockMV2D",
|
194 |
+
"DownBlock2D",
|
195 |
+
),
|
196 |
+
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
|
197 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
|
198 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
199 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
200 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
201 |
+
downsample_padding: int = 1,
|
202 |
+
mid_block_scale_factor: float = 1,
|
203 |
+
act_fn: str = "silu",
|
204 |
+
norm_num_groups: Optional[int] = 32,
|
205 |
+
norm_eps: float = 1e-5,
|
206 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
207 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
208 |
+
encoder_hid_dim: Optional[int] = None,
|
209 |
+
encoder_hid_dim_type: Optional[str] = None,
|
210 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
211 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
212 |
+
dual_cross_attention: bool = False,
|
213 |
+
use_linear_projection: bool = False,
|
214 |
+
class_embed_type: Optional[str] = None,
|
215 |
+
addition_embed_type: Optional[str] = None,
|
216 |
+
addition_time_embed_dim: Optional[int] = None,
|
217 |
+
num_class_embeds: Optional[int] = None,
|
218 |
+
upcast_attention: bool = False,
|
219 |
+
resnet_time_scale_shift: str = "default",
|
220 |
+
resnet_skip_time_act: bool = False,
|
221 |
+
resnet_out_scale_factor: int = 1.0,
|
222 |
+
time_embedding_type: str = "positional",
|
223 |
+
time_embedding_dim: Optional[int] = None,
|
224 |
+
time_embedding_act_fn: Optional[str] = None,
|
225 |
+
timestep_post_act: Optional[str] = None,
|
226 |
+
time_cond_proj_dim: Optional[int] = None,
|
227 |
+
conv_in_kernel: int = 3,
|
228 |
+
conv_out_kernel: int = 3,
|
229 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
230 |
+
class_embeddings_concat: bool = False,
|
231 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
232 |
+
cross_attention_norm: Optional[str] = None,
|
233 |
+
addition_embed_type_num_heads=64,
|
234 |
+
num_views: int = 1,
|
235 |
+
joint_attention: bool = False,
|
236 |
+
joint_attention_twice: bool = False,
|
237 |
+
multiview_attention: bool = True,
|
238 |
+
cross_domain_attention: bool = False,
|
239 |
+
camera_input_dim: int = 12,
|
240 |
+
camera_hidden_dim: int = 320,
|
241 |
+
camera_output_dim: int = 1280,
|
242 |
+
|
243 |
+
):
|
244 |
+
super().__init__()
|
245 |
+
|
246 |
+
self.sample_size = sample_size
|
247 |
+
|
248 |
+
if num_attention_heads is not None:
|
249 |
+
raise ValueError(
|
250 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
251 |
+
)
|
252 |
+
|
253 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
254 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
255 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
256 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
257 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
258 |
+
# which is why we correct for the naming here.
|
259 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
260 |
+
|
261 |
+
# Check inputs
|
262 |
+
if len(down_block_types) != len(up_block_types):
|
263 |
+
raise ValueError(
|
264 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
265 |
+
)
|
266 |
+
|
267 |
+
if len(block_out_channels) != len(down_block_types):
|
268 |
+
raise ValueError(
|
269 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
270 |
+
)
|
271 |
+
|
272 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
273 |
+
raise ValueError(
|
274 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
275 |
+
)
|
276 |
+
|
277 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
278 |
+
raise ValueError(
|
279 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
280 |
+
)
|
281 |
+
|
282 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
283 |
+
raise ValueError(
|
284 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
285 |
+
)
|
286 |
+
|
287 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
288 |
+
raise ValueError(
|
289 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
290 |
+
)
|
291 |
+
|
292 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
293 |
+
raise ValueError(
|
294 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
295 |
+
)
|
296 |
+
|
297 |
+
# input
|
298 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
299 |
+
self.conv_in = nn.Conv2d(
|
300 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
301 |
+
)
|
302 |
+
|
303 |
+
# time
|
304 |
+
if time_embedding_type == "fourier":
|
305 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
306 |
+
if time_embed_dim % 2 != 0:
|
307 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
308 |
+
self.time_proj = GaussianFourierProjection(
|
309 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
310 |
+
)
|
311 |
+
timestep_input_dim = time_embed_dim
|
312 |
+
elif time_embedding_type == "positional":
|
313 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
314 |
+
|
315 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
316 |
+
timestep_input_dim = block_out_channels[0]
|
317 |
+
else:
|
318 |
+
raise ValueError(
|
319 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
320 |
+
)
|
321 |
+
|
322 |
+
self.time_embedding = TimestepEmbedding(
|
323 |
+
timestep_input_dim,
|
324 |
+
time_embed_dim,
|
325 |
+
act_fn=act_fn,
|
326 |
+
post_act_fn=timestep_post_act,
|
327 |
+
cond_proj_dim=time_cond_proj_dim,
|
328 |
+
)
|
329 |
+
|
330 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
331 |
+
encoder_hid_dim_type = "text_proj"
|
332 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
333 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
334 |
+
|
335 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
336 |
+
raise ValueError(
|
337 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
338 |
+
)
|
339 |
+
|
340 |
+
if encoder_hid_dim_type == "text_proj":
|
341 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
342 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
343 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
344 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
345 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
346 |
+
self.encoder_hid_proj = TextImageProjection(
|
347 |
+
text_embed_dim=encoder_hid_dim,
|
348 |
+
image_embed_dim=cross_attention_dim,
|
349 |
+
cross_attention_dim=cross_attention_dim,
|
350 |
+
)
|
351 |
+
elif encoder_hid_dim_type == "image_proj":
|
352 |
+
# Kandinsky 2.2
|
353 |
+
self.encoder_hid_proj = ImageProjection(
|
354 |
+
image_embed_dim=encoder_hid_dim,
|
355 |
+
cross_attention_dim=cross_attention_dim,
|
356 |
+
)
|
357 |
+
elif encoder_hid_dim_type is not None:
|
358 |
+
raise ValueError(
|
359 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
360 |
+
)
|
361 |
+
else:
|
362 |
+
self.encoder_hid_proj = None
|
363 |
+
|
364 |
+
# class embedding
|
365 |
+
if class_embed_type is None and num_class_embeds is not None:
|
366 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
367 |
+
elif class_embed_type == "timestep":
|
368 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
369 |
+
elif class_embed_type == "identity":
|
370 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
371 |
+
elif class_embed_type == "projection":
|
372 |
+
if projection_class_embeddings_input_dim is None:
|
373 |
+
raise ValueError(
|
374 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
375 |
+
)
|
376 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
377 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
378 |
+
# 2. it projects from an arbitrary input dimension.
|
379 |
+
#
|
380 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
381 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
382 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
383 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
384 |
+
elif class_embed_type == "simple_projection":
|
385 |
+
if projection_class_embeddings_input_dim is None:
|
386 |
+
raise ValueError(
|
387 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
388 |
+
)
|
389 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
390 |
+
else:
|
391 |
+
self.class_embedding = None
|
392 |
+
|
393 |
+
if addition_embed_type == "text":
|
394 |
+
if encoder_hid_dim is not None:
|
395 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
396 |
+
else:
|
397 |
+
text_time_embedding_from_dim = cross_attention_dim
|
398 |
+
|
399 |
+
self.add_embedding = TextTimeEmbedding(
|
400 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
401 |
+
)
|
402 |
+
elif addition_embed_type == "text_image":
|
403 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
404 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
405 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
406 |
+
self.add_embedding = TextImageTimeEmbedding(
|
407 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
408 |
+
)
|
409 |
+
elif addition_embed_type == "text_time":
|
410 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
411 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
412 |
+
elif addition_embed_type == "image":
|
413 |
+
# Kandinsky 2.2
|
414 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
415 |
+
elif addition_embed_type == "image_hint":
|
416 |
+
# Kandinsky 2.2 ControlNet
|
417 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
418 |
+
elif addition_embed_type is not None:
|
419 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
420 |
+
|
421 |
+
if time_embedding_act_fn is None:
|
422 |
+
self.time_embed_act = None
|
423 |
+
else:
|
424 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
425 |
+
|
426 |
+
self.camera_embedding = nn.Sequential(
|
427 |
+
nn.Linear(camera_input_dim, time_embed_dim),
|
428 |
+
nn.SiLU(),
|
429 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
430 |
+
)
|
431 |
+
|
432 |
+
self.down_blocks = nn.ModuleList([])
|
433 |
+
self.up_blocks = nn.ModuleList([])
|
434 |
+
|
435 |
+
if isinstance(only_cross_attention, bool):
|
436 |
+
if mid_block_only_cross_attention is None:
|
437 |
+
mid_block_only_cross_attention = only_cross_attention
|
438 |
+
|
439 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
440 |
+
|
441 |
+
if mid_block_only_cross_attention is None:
|
442 |
+
mid_block_only_cross_attention = False
|
443 |
+
|
444 |
+
if isinstance(num_attention_heads, int):
|
445 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
446 |
+
|
447 |
+
if isinstance(attention_head_dim, int):
|
448 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
449 |
+
|
450 |
+
if isinstance(cross_attention_dim, int):
|
451 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
452 |
+
|
453 |
+
if isinstance(layers_per_block, int):
|
454 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
455 |
+
|
456 |
+
if isinstance(transformer_layers_per_block, int):
|
457 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
458 |
+
|
459 |
+
if class_embeddings_concat:
|
460 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
461 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
462 |
+
# regular time embeddings
|
463 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
464 |
+
else:
|
465 |
+
blocks_time_embed_dim = time_embed_dim
|
466 |
+
|
467 |
+
# down
|
468 |
+
output_channel = block_out_channels[0]
|
469 |
+
for i, down_block_type in enumerate(down_block_types):
|
470 |
+
input_channel = output_channel
|
471 |
+
output_channel = block_out_channels[i]
|
472 |
+
is_final_block = i == len(block_out_channels) - 1
|
473 |
+
|
474 |
+
down_block = get_down_block(
|
475 |
+
down_block_type,
|
476 |
+
num_layers=layers_per_block[i],
|
477 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
478 |
+
in_channels=input_channel,
|
479 |
+
out_channels=output_channel,
|
480 |
+
temb_channels=blocks_time_embed_dim,
|
481 |
+
add_downsample=not is_final_block,
|
482 |
+
resnet_eps=norm_eps,
|
483 |
+
resnet_act_fn=act_fn,
|
484 |
+
resnet_groups=norm_num_groups,
|
485 |
+
cross_attention_dim=cross_attention_dim[i],
|
486 |
+
num_attention_heads=num_attention_heads[i],
|
487 |
+
downsample_padding=downsample_padding,
|
488 |
+
dual_cross_attention=dual_cross_attention,
|
489 |
+
use_linear_projection=use_linear_projection,
|
490 |
+
only_cross_attention=only_cross_attention[i],
|
491 |
+
upcast_attention=upcast_attention,
|
492 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
493 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
494 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
495 |
+
cross_attention_norm=cross_attention_norm,
|
496 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
497 |
+
num_views=num_views,
|
498 |
+
joint_attention=joint_attention,
|
499 |
+
joint_attention_twice=joint_attention_twice,
|
500 |
+
multiview_attention=multiview_attention,
|
501 |
+
cross_domain_attention=cross_domain_attention
|
502 |
+
)
|
503 |
+
self.down_blocks.append(down_block)
|
504 |
+
|
505 |
+
# mid
|
506 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
507 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
508 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
509 |
+
in_channels=block_out_channels[-1],
|
510 |
+
temb_channels=blocks_time_embed_dim,
|
511 |
+
resnet_eps=norm_eps,
|
512 |
+
resnet_act_fn=act_fn,
|
513 |
+
output_scale_factor=mid_block_scale_factor,
|
514 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
515 |
+
cross_attention_dim=cross_attention_dim[-1],
|
516 |
+
num_attention_heads=num_attention_heads[-1],
|
517 |
+
resnet_groups=norm_num_groups,
|
518 |
+
dual_cross_attention=dual_cross_attention,
|
519 |
+
use_linear_projection=use_linear_projection,
|
520 |
+
upcast_attention=upcast_attention,
|
521 |
+
)
|
522 |
+
# custom MV2D attention block
|
523 |
+
elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
|
524 |
+
self.mid_block = UNetMidBlockMV2DCrossAttn(
|
525 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
526 |
+
in_channels=block_out_channels[-1],
|
527 |
+
temb_channels=blocks_time_embed_dim,
|
528 |
+
resnet_eps=norm_eps,
|
529 |
+
resnet_act_fn=act_fn,
|
530 |
+
output_scale_factor=mid_block_scale_factor,
|
531 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
532 |
+
cross_attention_dim=cross_attention_dim[-1],
|
533 |
+
num_attention_heads=num_attention_heads[-1],
|
534 |
+
resnet_groups=norm_num_groups,
|
535 |
+
dual_cross_attention=dual_cross_attention,
|
536 |
+
use_linear_projection=use_linear_projection,
|
537 |
+
upcast_attention=upcast_attention,
|
538 |
+
num_views=num_views,
|
539 |
+
joint_attention=joint_attention,
|
540 |
+
joint_attention_twice=joint_attention_twice,
|
541 |
+
multiview_attention=multiview_attention,
|
542 |
+
cross_domain_attention=cross_domain_attention
|
543 |
+
)
|
544 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
545 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
546 |
+
in_channels=block_out_channels[-1],
|
547 |
+
temb_channels=blocks_time_embed_dim,
|
548 |
+
resnet_eps=norm_eps,
|
549 |
+
resnet_act_fn=act_fn,
|
550 |
+
output_scale_factor=mid_block_scale_factor,
|
551 |
+
cross_attention_dim=cross_attention_dim[-1],
|
552 |
+
attention_head_dim=attention_head_dim[-1],
|
553 |
+
resnet_groups=norm_num_groups,
|
554 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
555 |
+
skip_time_act=resnet_skip_time_act,
|
556 |
+
only_cross_attention=mid_block_only_cross_attention,
|
557 |
+
cross_attention_norm=cross_attention_norm,
|
558 |
+
)
|
559 |
+
elif mid_block_type is None:
|
560 |
+
self.mid_block = None
|
561 |
+
else:
|
562 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
563 |
+
|
564 |
+
# count how many layers upsample the images
|
565 |
+
self.num_upsamplers = 0
|
566 |
+
|
567 |
+
# up
|
568 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
569 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
570 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
571 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
572 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
573 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
574 |
+
|
575 |
+
output_channel = reversed_block_out_channels[0]
|
576 |
+
for i, up_block_type in enumerate(up_block_types):
|
577 |
+
is_final_block = i == len(block_out_channels) - 1
|
578 |
+
|
579 |
+
prev_output_channel = output_channel
|
580 |
+
output_channel = reversed_block_out_channels[i]
|
581 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
582 |
+
|
583 |
+
# add upsample block for all BUT final layer
|
584 |
+
if not is_final_block:
|
585 |
+
add_upsample = True
|
586 |
+
self.num_upsamplers += 1
|
587 |
+
else:
|
588 |
+
add_upsample = False
|
589 |
+
|
590 |
+
up_block = get_up_block(
|
591 |
+
up_block_type,
|
592 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
593 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
594 |
+
in_channels=input_channel,
|
595 |
+
out_channels=output_channel,
|
596 |
+
prev_output_channel=prev_output_channel,
|
597 |
+
temb_channels=blocks_time_embed_dim,
|
598 |
+
add_upsample=add_upsample,
|
599 |
+
resnet_eps=norm_eps,
|
600 |
+
resnet_act_fn=act_fn,
|
601 |
+
resnet_groups=norm_num_groups,
|
602 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
603 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
604 |
+
dual_cross_attention=dual_cross_attention,
|
605 |
+
use_linear_projection=use_linear_projection,
|
606 |
+
only_cross_attention=only_cross_attention[i],
|
607 |
+
upcast_attention=upcast_attention,
|
608 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
609 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
610 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
611 |
+
cross_attention_norm=cross_attention_norm,
|
612 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
613 |
+
num_views=num_views,
|
614 |
+
joint_attention=joint_attention,
|
615 |
+
joint_attention_twice=joint_attention_twice,
|
616 |
+
multiview_attention=multiview_attention,
|
617 |
+
cross_domain_attention=cross_domain_attention
|
618 |
+
)
|
619 |
+
self.up_blocks.append(up_block)
|
620 |
+
prev_output_channel = output_channel
|
621 |
+
|
622 |
+
# out
|
623 |
+
if norm_num_groups is not None:
|
624 |
+
self.conv_norm_out = nn.GroupNorm(
|
625 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
626 |
+
)
|
627 |
+
|
628 |
+
self.conv_act = get_activation(act_fn)
|
629 |
+
|
630 |
+
else:
|
631 |
+
self.conv_norm_out = None
|
632 |
+
self.conv_act = None
|
633 |
+
|
634 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
635 |
+
self.conv_out = nn.Conv2d(
|
636 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
637 |
+
)
|
638 |
+
|
639 |
+
@property
|
640 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
641 |
+
r"""
|
642 |
+
Returns:
|
643 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
644 |
+
indexed by its weight name.
|
645 |
+
"""
|
646 |
+
# set recursively
|
647 |
+
processors = {}
|
648 |
+
|
649 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
650 |
+
if hasattr(module, "set_processor"):
|
651 |
+
processors[f"{name}.processor"] = module.processor
|
652 |
+
|
653 |
+
for sub_name, child in module.named_children():
|
654 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
655 |
+
|
656 |
+
return processors
|
657 |
+
|
658 |
+
for name, module in self.named_children():
|
659 |
+
fn_recursive_add_processors(name, module, processors)
|
660 |
+
|
661 |
+
return processors
|
662 |
+
|
663 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
664 |
+
r"""
|
665 |
+
Sets the attention processor to use to compute attention.
|
666 |
+
|
667 |
+
Parameters:
|
668 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
669 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
670 |
+
for **all** `Attention` layers.
|
671 |
+
|
672 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
673 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
674 |
+
|
675 |
+
"""
|
676 |
+
count = len(self.attn_processors.keys())
|
677 |
+
|
678 |
+
if isinstance(processor, dict) and len(processor) != count:
|
679 |
+
raise ValueError(
|
680 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
681 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
682 |
+
)
|
683 |
+
|
684 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
685 |
+
if hasattr(module, "set_processor"):
|
686 |
+
if not isinstance(processor, dict):
|
687 |
+
module.set_processor(processor)
|
688 |
+
else:
|
689 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
690 |
+
|
691 |
+
for sub_name, child in module.named_children():
|
692 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
693 |
+
|
694 |
+
for name, module in self.named_children():
|
695 |
+
fn_recursive_attn_processor(name, module, processor)
|
696 |
+
|
697 |
+
def set_default_attn_processor(self):
|
698 |
+
"""
|
699 |
+
Disables custom attention processors and sets the default attention implementation.
|
700 |
+
"""
|
701 |
+
self.set_attn_processor(AttnProcessor())
|
702 |
+
|
703 |
+
def set_attention_slice(self, slice_size):
|
704 |
+
r"""
|
705 |
+
Enable sliced attention computation.
|
706 |
+
|
707 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
708 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
709 |
+
|
710 |
+
Args:
|
711 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
712 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
713 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
714 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
715 |
+
must be a multiple of `slice_size`.
|
716 |
+
"""
|
717 |
+
sliceable_head_dims = []
|
718 |
+
|
719 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
720 |
+
if hasattr(module, "set_attention_slice"):
|
721 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
722 |
+
|
723 |
+
for child in module.children():
|
724 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
725 |
+
|
726 |
+
# retrieve number of attention layers
|
727 |
+
for module in self.children():
|
728 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
729 |
+
|
730 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
731 |
+
|
732 |
+
if slice_size == "auto":
|
733 |
+
# half the attention head size is usually a good trade-off between
|
734 |
+
# speed and memory
|
735 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
736 |
+
elif slice_size == "max":
|
737 |
+
# make smallest slice possible
|
738 |
+
slice_size = num_sliceable_layers * [1]
|
739 |
+
|
740 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
741 |
+
|
742 |
+
if len(slice_size) != len(sliceable_head_dims):
|
743 |
+
raise ValueError(
|
744 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
745 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
746 |
+
)
|
747 |
+
|
748 |
+
for i in range(len(slice_size)):
|
749 |
+
size = slice_size[i]
|
750 |
+
dim = sliceable_head_dims[i]
|
751 |
+
if size is not None and size > dim:
|
752 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
753 |
+
|
754 |
+
# Recursively walk through all the children.
|
755 |
+
# Any children which exposes the set_attention_slice method
|
756 |
+
# gets the message
|
757 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
758 |
+
if hasattr(module, "set_attention_slice"):
|
759 |
+
module.set_attention_slice(slice_size.pop())
|
760 |
+
|
761 |
+
for child in module.children():
|
762 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
763 |
+
|
764 |
+
reversed_slice_size = list(reversed(slice_size))
|
765 |
+
for module in self.children():
|
766 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
767 |
+
|
768 |
+
# def _set_gradient_checkpointing(self, module, value=False):
|
769 |
+
# if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)):
|
770 |
+
# module.gradient_checkpointing = value
|
771 |
+
|
772 |
+
def forward(
|
773 |
+
self,
|
774 |
+
sample: torch.FloatTensor,
|
775 |
+
timestep: Union[torch.Tensor, float, int],
|
776 |
+
encoder_hidden_states: torch.Tensor,
|
777 |
+
camera_matrixs: Optional[torch.Tensor] = None,
|
778 |
+
class_labels: Optional[torch.Tensor] = None,
|
779 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
780 |
+
attention_mask: Optional[torch.Tensor] = None,
|
781 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
782 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
783 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
784 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
785 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
786 |
+
return_dict: bool = True,
|
787 |
+
) -> Union[UNetMV2DConditionOutput, Tuple]:
|
788 |
+
r"""
|
789 |
+
The [`UNet2DConditionModel`] forward method.
|
790 |
+
|
791 |
+
Args:
|
792 |
+
sample (`torch.FloatTensor`):
|
793 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
794 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
795 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
796 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
797 |
+
encoder_attention_mask (`torch.Tensor`):
|
798 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
799 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
800 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
801 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
802 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
803 |
+
tuple.
|
804 |
+
cross_attention_kwargs (`dict`, *optional*):
|
805 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
806 |
+
added_cond_kwargs: (`dict`, *optional*):
|
807 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
808 |
+
are passed along to the UNet blocks.
|
809 |
+
|
810 |
+
Returns:
|
811 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
812 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
813 |
+
a `tuple` is returned where the first element is the sample tensor.
|
814 |
+
"""
|
815 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
816 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
817 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
818 |
+
# on the fly if necessary.
|
819 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
820 |
+
|
821 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
822 |
+
forward_upsample_size = False
|
823 |
+
upsample_size = None
|
824 |
+
|
825 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
826 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
827 |
+
forward_upsample_size = True
|
828 |
+
|
829 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
830 |
+
# expects mask of shape:
|
831 |
+
# [batch, key_tokens]
|
832 |
+
# adds singleton query_tokens dimension:
|
833 |
+
# [batch, 1, key_tokens]
|
834 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
835 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
836 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
837 |
+
if attention_mask is not None:
|
838 |
+
# assume that mask is expressed as:
|
839 |
+
# (1 = keep, 0 = discard)
|
840 |
+
# convert mask into a bias that can be added to attention scores:
|
841 |
+
# (keep = +0, discard = -10000.0)
|
842 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
843 |
+
attention_mask = attention_mask.unsqueeze(1)
|
844 |
+
|
845 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
846 |
+
if encoder_attention_mask is not None:
|
847 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
848 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
849 |
+
|
850 |
+
# 0. center input if necessary
|
851 |
+
if self.config.center_input_sample:
|
852 |
+
sample = 2 * sample - 1.0
|
853 |
+
|
854 |
+
# 1. time
|
855 |
+
timesteps = timestep
|
856 |
+
if not torch.is_tensor(timesteps):
|
857 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
858 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
859 |
+
is_mps = sample.device.type == "mps"
|
860 |
+
if isinstance(timestep, float):
|
861 |
+
dtype = torch.float32 if is_mps else torch.float64
|
862 |
+
else:
|
863 |
+
dtype = torch.int32 if is_mps else torch.int64
|
864 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
865 |
+
elif len(timesteps.shape) == 0:
|
866 |
+
timesteps = timesteps[None].to(sample.device)
|
867 |
+
|
868 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
869 |
+
timesteps = timesteps.expand(sample.shape[0])
|
870 |
+
|
871 |
+
t_emb = self.time_proj(timesteps)
|
872 |
+
|
873 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
874 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
875 |
+
# there might be better ways to encapsulate this.
|
876 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
877 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
878 |
+
|
879 |
+
# import pdb; pdb.set_trace()
|
880 |
+
if camera_matrixs is not None:
|
881 |
+
emb = torch.unsqueeze(emb, 1)
|
882 |
+
# came emb
|
883 |
+
cam_emb = self.camera_embedding(camera_matrixs)
|
884 |
+
# cam_emb = self.camera_embedding_2(cam_emb)
|
885 |
+
# import ipdb
|
886 |
+
# ipdb.set_trace()
|
887 |
+
emb = emb.repeat(1,cam_emb.shape[1],1) #torch.Size([32, 4, 1280])
|
888 |
+
emb = emb + cam_emb
|
889 |
+
emb = rearrange(emb, "b f c -> (b f) c", f=emb.shape[1])
|
890 |
+
|
891 |
+
aug_emb = None
|
892 |
+
|
893 |
+
if self.class_embedding is not None and class_labels is not None:
|
894 |
+
if class_labels is None:
|
895 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
896 |
+
|
897 |
+
if self.config.class_embed_type == "timestep":
|
898 |
+
class_labels = self.time_proj(class_labels)
|
899 |
+
|
900 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
901 |
+
# there might be better ways to encapsulate this.
|
902 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
903 |
+
|
904 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
905 |
+
|
906 |
+
if self.config.class_embeddings_concat:
|
907 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
908 |
+
else:
|
909 |
+
emb = emb + class_emb
|
910 |
+
|
911 |
+
if self.config.addition_embed_type == "text":
|
912 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
913 |
+
elif self.config.addition_embed_type == "text_image":
|
914 |
+
# Kandinsky 2.1 - style
|
915 |
+
if "image_embeds" not in added_cond_kwargs:
|
916 |
+
raise ValueError(
|
917 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
918 |
+
)
|
919 |
+
|
920 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
921 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
922 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
923 |
+
elif self.config.addition_embed_type == "text_time":
|
924 |
+
# SDXL - style
|
925 |
+
if "text_embeds" not in added_cond_kwargs:
|
926 |
+
raise ValueError(
|
927 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
928 |
+
)
|
929 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
930 |
+
if "time_ids" not in added_cond_kwargs:
|
931 |
+
raise ValueError(
|
932 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
933 |
+
)
|
934 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
935 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
936 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
937 |
+
|
938 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
939 |
+
add_embeds = add_embeds.to(emb.dtype)
|
940 |
+
aug_emb = self.add_embedding(add_embeds)
|
941 |
+
elif self.config.addition_embed_type == "image":
|
942 |
+
# Kandinsky 2.2 - style
|
943 |
+
if "image_embeds" not in added_cond_kwargs:
|
944 |
+
raise ValueError(
|
945 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
946 |
+
)
|
947 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
948 |
+
aug_emb = self.add_embedding(image_embs)
|
949 |
+
elif self.config.addition_embed_type == "image_hint":
|
950 |
+
# Kandinsky 2.2 - style
|
951 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
952 |
+
raise ValueError(
|
953 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
954 |
+
)
|
955 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
956 |
+
hint = added_cond_kwargs.get("hint")
|
957 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
958 |
+
sample = torch.cat([sample, hint], dim=1)
|
959 |
+
|
960 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
961 |
+
|
962 |
+
if self.time_embed_act is not None:
|
963 |
+
emb = self.time_embed_act(emb)
|
964 |
+
|
965 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
966 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
967 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
968 |
+
# Kadinsky 2.1 - style
|
969 |
+
if "image_embeds" not in added_cond_kwargs:
|
970 |
+
raise ValueError(
|
971 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
972 |
+
)
|
973 |
+
|
974 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
975 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
976 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
977 |
+
# Kandinsky 2.2 - style
|
978 |
+
if "image_embeds" not in added_cond_kwargs:
|
979 |
+
raise ValueError(
|
980 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
981 |
+
)
|
982 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
983 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
984 |
+
# 2. pre-process
|
985 |
+
sample = rearrange(sample, "b c f h w -> (b f) c h w", f=sample.shape[2])
|
986 |
+
sample = self.conv_in(sample)
|
987 |
+
# 3. down
|
988 |
+
|
989 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
990 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
991 |
+
|
992 |
+
down_block_res_samples = (sample,)
|
993 |
+
for downsample_block in self.down_blocks:
|
994 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
995 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
996 |
+
additional_residuals = {}
|
997 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
998 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
999 |
+
|
1000 |
+
sample, res_samples = downsample_block(
|
1001 |
+
hidden_states=sample,
|
1002 |
+
temb=emb,
|
1003 |
+
encoder_hidden_states=encoder_hidden_states,
|
1004 |
+
attention_mask=attention_mask,
|
1005 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1006 |
+
encoder_attention_mask=encoder_attention_mask,
|
1007 |
+
**additional_residuals,
|
1008 |
+
)
|
1009 |
+
else:
|
1010 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1011 |
+
|
1012 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1013 |
+
sample += down_block_additional_residuals.pop(0)
|
1014 |
+
|
1015 |
+
down_block_res_samples += res_samples
|
1016 |
+
|
1017 |
+
if is_controlnet:
|
1018 |
+
new_down_block_res_samples = ()
|
1019 |
+
|
1020 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1021 |
+
down_block_res_samples, down_block_additional_residuals
|
1022 |
+
):
|
1023 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1024 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1025 |
+
|
1026 |
+
down_block_res_samples = new_down_block_res_samples
|
1027 |
+
# print("after down: ", sample.mean(), emb.mean())
|
1028 |
+
# 4. mid
|
1029 |
+
if self.mid_block is not None:
|
1030 |
+
sample = self.mid_block(
|
1031 |
+
sample,
|
1032 |
+
emb,
|
1033 |
+
encoder_hidden_states=encoder_hidden_states,
|
1034 |
+
attention_mask=attention_mask,
|
1035 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1036 |
+
encoder_attention_mask=encoder_attention_mask,
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
if is_controlnet:
|
1040 |
+
sample = sample + mid_block_additional_residual
|
1041 |
+
|
1042 |
+
# 5. up
|
1043 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1044 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1045 |
+
|
1046 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1047 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1048 |
+
|
1049 |
+
# if we have not reached the final block and need to forward the
|
1050 |
+
# upsample size, we do it here
|
1051 |
+
if not is_final_block and forward_upsample_size:
|
1052 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1053 |
+
|
1054 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1055 |
+
sample = upsample_block(
|
1056 |
+
hidden_states=sample,
|
1057 |
+
temb=emb,
|
1058 |
+
res_hidden_states_tuple=res_samples,
|
1059 |
+
encoder_hidden_states=encoder_hidden_states,
|
1060 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1061 |
+
upsample_size=upsample_size,
|
1062 |
+
attention_mask=attention_mask,
|
1063 |
+
encoder_attention_mask=encoder_attention_mask,
|
1064 |
+
)
|
1065 |
+
else:
|
1066 |
+
sample = upsample_block(
|
1067 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
# 6. post-process
|
1071 |
+
if self.conv_norm_out:
|
1072 |
+
sample = self.conv_norm_out(sample)
|
1073 |
+
sample = self.conv_act(sample)
|
1074 |
+
sample = self.conv_out(sample)
|
1075 |
+
|
1076 |
+
if not return_dict:
|
1077 |
+
return (sample,)
|
1078 |
+
|
1079 |
+
return UNetMV2DConditionOutput(sample=sample)
|
1080 |
+
|
1081 |
+
@classmethod
|
1082 |
+
def from_pretrained_2d(
|
1083 |
+
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
1084 |
+
camera_embedding_type: str, num_views: int, sample_size: int,
|
1085 |
+
zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False,
|
1086 |
+
projection_class_embeddings_input_dim: int=6, joint_attention: bool = False,
|
1087 |
+
joint_attention_twice: bool = False, multiview_attention: bool = True,
|
1088 |
+
cross_domain_attention: bool = False,
|
1089 |
+
in_channels: int = 8, out_channels: int = 4, local_crossattn=False,
|
1090 |
+
**kwargs
|
1091 |
+
):
|
1092 |
+
r"""
|
1093 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
1094 |
+
|
1095 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
1096 |
+
train the model, set it back in training mode with `model.train()`.
|
1097 |
+
|
1098 |
+
Parameters:
|
1099 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
1100 |
+
Can be either:
|
1101 |
+
|
1102 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
1103 |
+
the Hub.
|
1104 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
1105 |
+
with [`~ModelMixin.save_pretrained`].
|
1106 |
+
|
1107 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
1108 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
1109 |
+
is not used.
|
1110 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
1111 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
1112 |
+
dtype is automatically derived from the model's weights.
|
1113 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
1114 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
1115 |
+
cached versions if they exist.
|
1116 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
1117 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
1118 |
+
incompletely downloaded files are deleted.
|
1119 |
+
proxies (`Dict[str, str]`, *optional*):
|
1120 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
1121 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
1122 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
1123 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
1124 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
1125 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
1126 |
+
won't be downloaded from the Hub.
|
1127 |
+
use_auth_token (`str` or *bool*, *optional*):
|
1128 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
1129 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
1130 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
1131 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
1132 |
+
allowed by Git.
|
1133 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
1134 |
+
Load the model weights from a Flax checkpoint save file.
|
1135 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
1136 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
1137 |
+
mirror (`str`, *optional*):
|
1138 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
1139 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
1140 |
+
information.
|
1141 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1142 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
1143 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
1144 |
+
same device.
|
1145 |
+
|
1146 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
1147 |
+
more information about each option see [designing a device
|
1148 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
1149 |
+
max_memory (`Dict`, *optional*):
|
1150 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
1151 |
+
each GPU and the available CPU RAM if unset.
|
1152 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
1153 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
1154 |
+
offload_state_dict (`bool`, *optional*):
|
1155 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
1156 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
1157 |
+
when there is some disk offload.
|
1158 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
1159 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
1160 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
1161 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
1162 |
+
argument to `True` will raise an error.
|
1163 |
+
variant (`str`, *optional*):
|
1164 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
1165 |
+
loading `from_flax`.
|
1166 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
1167 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
1168 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
1169 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
1170 |
+
|
1171 |
+
<Tip>
|
1172 |
+
|
1173 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
1174 |
+
`huggingface-cli login`. You can also activate the special
|
1175 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
1176 |
+
firewalled environment.
|
1177 |
+
|
1178 |
+
</Tip>
|
1179 |
+
|
1180 |
+
Example:
|
1181 |
+
|
1182 |
+
```py
|
1183 |
+
from diffusers import UNet2DConditionModel
|
1184 |
+
|
1185 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
1186 |
+
```
|
1187 |
+
|
1188 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
1189 |
+
|
1190 |
+
```bash
|
1191 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
1192 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
1193 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
1194 |
+
```
|
1195 |
+
"""
|
1196 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
1197 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
1198 |
+
force_download = kwargs.pop("force_download", False)
|
1199 |
+
from_flax = kwargs.pop("from_flax", False)
|
1200 |
+
resume_download = kwargs.pop("resume_download", False)
|
1201 |
+
proxies = kwargs.pop("proxies", None)
|
1202 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
1203 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1204 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1205 |
+
revision = kwargs.pop("revision", None)
|
1206 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
1207 |
+
subfolder = kwargs.pop("subfolder", None)
|
1208 |
+
device_map = kwargs.pop("device_map", None)
|
1209 |
+
max_memory = kwargs.pop("max_memory", None)
|
1210 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
1211 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1212 |
+
variant = kwargs.pop("variant", None)
|
1213 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1214 |
+
|
1215 |
+
# if use_safetensors and not is_safetensors_available():
|
1216 |
+
# raise ValueError(
|
1217 |
+
# "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
|
1218 |
+
# )
|
1219 |
+
|
1220 |
+
allow_pickle = False
|
1221 |
+
if use_safetensors is None:
|
1222 |
+
# use_safetensors = is_safetensors_available()
|
1223 |
+
use_safetensors = False
|
1224 |
+
allow_pickle = True
|
1225 |
+
|
1226 |
+
if device_map is not None and not is_accelerate_available():
|
1227 |
+
raise NotImplementedError(
|
1228 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
1229 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
# Check if we can handle device_map and dispatching the weights
|
1233 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1234 |
+
raise NotImplementedError(
|
1235 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1236 |
+
" `device_map=None`."
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
# Load config if we don't provide a configuration
|
1240 |
+
config_path = pretrained_model_name_or_path
|
1241 |
+
|
1242 |
+
user_agent = {
|
1243 |
+
"diffusers": __version__,
|
1244 |
+
"file_type": "model",
|
1245 |
+
"framework": "pytorch",
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
# load config
|
1249 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
1250 |
+
config_path,
|
1251 |
+
cache_dir=cache_dir,
|
1252 |
+
return_unused_kwargs=True,
|
1253 |
+
return_commit_hash=True,
|
1254 |
+
force_download=force_download,
|
1255 |
+
resume_download=resume_download,
|
1256 |
+
proxies=proxies,
|
1257 |
+
local_files_only=local_files_only,
|
1258 |
+
use_auth_token=use_auth_token,
|
1259 |
+
revision=revision,
|
1260 |
+
subfolder=subfolder,
|
1261 |
+
device_map=device_map,
|
1262 |
+
max_memory=max_memory,
|
1263 |
+
offload_folder=offload_folder,
|
1264 |
+
offload_state_dict=offload_state_dict,
|
1265 |
+
user_agent=user_agent,
|
1266 |
+
**kwargs,
|
1267 |
+
)
|
1268 |
+
|
1269 |
+
# modify config
|
1270 |
+
config["_class_name"] = cls.__name__
|
1271 |
+
config['in_channels'] = in_channels
|
1272 |
+
config['out_channels'] = out_channels
|
1273 |
+
config['sample_size'] = sample_size # training resolution
|
1274 |
+
config['num_views'] = num_views
|
1275 |
+
config['joint_attention'] = joint_attention
|
1276 |
+
config['joint_attention_twice'] = joint_attention_twice
|
1277 |
+
config['multiview_attention'] = multiview_attention
|
1278 |
+
config['cross_domain_attention'] = cross_domain_attention
|
1279 |
+
config["down_block_types"] = [
|
1280 |
+
"CrossAttnDownBlockMV2D",
|
1281 |
+
"CrossAttnDownBlockMV2D",
|
1282 |
+
"CrossAttnDownBlockMV2D",
|
1283 |
+
"DownBlock2D"
|
1284 |
+
]
|
1285 |
+
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
|
1286 |
+
config["up_block_types"] = [
|
1287 |
+
"UpBlock2D",
|
1288 |
+
"CrossAttnUpBlockMV2D",
|
1289 |
+
"CrossAttnUpBlockMV2D",
|
1290 |
+
"CrossAttnUpBlockMV2D"
|
1291 |
+
]
|
1292 |
+
config['class_embed_type'] = 'projection'
|
1293 |
+
if camera_embedding_type == 'e_de_da_sincos':
|
1294 |
+
config['projection_class_embeddings_input_dim'] = projection_class_embeddings_input_dim # default 6
|
1295 |
+
else:
|
1296 |
+
raise NotImplementedError
|
1297 |
+
|
1298 |
+
# load model
|
1299 |
+
model_file = None
|
1300 |
+
if from_flax:
|
1301 |
+
raise NotImplementedError
|
1302 |
+
else:
|
1303 |
+
if use_safetensors:
|
1304 |
+
try:
|
1305 |
+
model_file = _get_model_file(
|
1306 |
+
pretrained_model_name_or_path,
|
1307 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
1308 |
+
cache_dir=cache_dir,
|
1309 |
+
force_download=force_download,
|
1310 |
+
resume_download=resume_download,
|
1311 |
+
proxies=proxies,
|
1312 |
+
local_files_only=local_files_only,
|
1313 |
+
use_auth_token=use_auth_token,
|
1314 |
+
revision=revision,
|
1315 |
+
subfolder=subfolder,
|
1316 |
+
user_agent=user_agent,
|
1317 |
+
commit_hash=commit_hash,
|
1318 |
+
)
|
1319 |
+
except IOError as e:
|
1320 |
+
if not allow_pickle:
|
1321 |
+
raise e
|
1322 |
+
pass
|
1323 |
+
if model_file is None:
|
1324 |
+
model_file = _get_model_file(
|
1325 |
+
pretrained_model_name_or_path,
|
1326 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
1327 |
+
cache_dir=cache_dir,
|
1328 |
+
force_download=force_download,
|
1329 |
+
resume_download=resume_download,
|
1330 |
+
proxies=proxies,
|
1331 |
+
local_files_only=local_files_only,
|
1332 |
+
use_auth_token=use_auth_token,
|
1333 |
+
revision=revision,
|
1334 |
+
subfolder=subfolder,
|
1335 |
+
user_agent=user_agent,
|
1336 |
+
commit_hash=commit_hash,
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
model = cls.from_config(config, **unused_kwargs)
|
1340 |
+
if local_crossattn:
|
1341 |
+
unet_lora_attn_procs = dict()
|
1342 |
+
for name, _ in model.attn_processors.items():
|
1343 |
+
if not name.endswith("attn1.processor"):
|
1344 |
+
default_attn_proc = AttnProcessor()
|
1345 |
+
elif is_xformers_available():
|
1346 |
+
default_attn_proc = XFormersMVAttnProcessor()
|
1347 |
+
else:
|
1348 |
+
default_attn_proc = MVAttnProcessor()
|
1349 |
+
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
1350 |
+
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
|
1351 |
+
)
|
1352 |
+
model.set_attn_processor(unet_lora_attn_procs)
|
1353 |
+
state_dict = load_state_dict(model_file, variant=variant)
|
1354 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1355 |
+
|
1356 |
+
conv_in_weight = state_dict['conv_in.weight']
|
1357 |
+
conv_out_weight = state_dict['conv_out.weight']
|
1358 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
|
1359 |
+
model,
|
1360 |
+
state_dict,
|
1361 |
+
model_file,
|
1362 |
+
pretrained_model_name_or_path,
|
1363 |
+
ignore_mismatched_sizes=True,
|
1364 |
+
)
|
1365 |
+
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
|
1366 |
+
# initialize from the original SD structure
|
1367 |
+
model.conv_in.weight.data[:,:4] = conv_in_weight
|
1368 |
+
|
1369 |
+
# whether to place all zero to new layers?
|
1370 |
+
if zero_init_conv_in:
|
1371 |
+
model.conv_in.weight.data[:,4:] = 0.
|
1372 |
+
|
1373 |
+
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
|
1374 |
+
# initialize from the original SD structure
|
1375 |
+
model.conv_out.weight.data[:,:4] = conv_out_weight
|
1376 |
+
if out_channels == 8: # copy for the last 4 channels
|
1377 |
+
model.conv_out.weight.data[:, 4:] = conv_out_weight
|
1378 |
+
|
1379 |
+
if zero_init_camera_projection:
|
1380 |
+
for p in model.class_embedding.parameters():
|
1381 |
+
torch.nn.init.zeros_(p)
|
1382 |
+
|
1383 |
+
loading_info = {
|
1384 |
+
"missing_keys": missing_keys,
|
1385 |
+
"unexpected_keys": unexpected_keys,
|
1386 |
+
"mismatched_keys": mismatched_keys,
|
1387 |
+
"error_msgs": error_msgs,
|
1388 |
+
}
|
1389 |
+
|
1390 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
1391 |
+
raise ValueError(
|
1392 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
1393 |
+
)
|
1394 |
+
elif torch_dtype is not None:
|
1395 |
+
model = model.to(torch_dtype)
|
1396 |
+
|
1397 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1398 |
+
|
1399 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1400 |
+
model.eval()
|
1401 |
+
if output_loading_info:
|
1402 |
+
return model, loading_info
|
1403 |
+
|
1404 |
+
return model
|
1405 |
+
|
1406 |
+
@classmethod
|
1407 |
+
def _load_pretrained_model_2d(
|
1408 |
+
cls,
|
1409 |
+
model,
|
1410 |
+
state_dict,
|
1411 |
+
resolved_archive_file,
|
1412 |
+
pretrained_model_name_or_path,
|
1413 |
+
ignore_mismatched_sizes=False,
|
1414 |
+
):
|
1415 |
+
# Retrieve missing & unexpected_keys
|
1416 |
+
model_state_dict = model.state_dict()
|
1417 |
+
loaded_keys = list(state_dict.keys())
|
1418 |
+
|
1419 |
+
expected_keys = list(model_state_dict.keys())
|
1420 |
+
|
1421 |
+
original_loaded_keys = loaded_keys
|
1422 |
+
|
1423 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
1424 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
1425 |
+
|
1426 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
1427 |
+
model_to_load = model
|
1428 |
+
|
1429 |
+
def _find_mismatched_keys(
|
1430 |
+
state_dict,
|
1431 |
+
model_state_dict,
|
1432 |
+
loaded_keys,
|
1433 |
+
ignore_mismatched_sizes,
|
1434 |
+
):
|
1435 |
+
mismatched_keys = []
|
1436 |
+
if ignore_mismatched_sizes:
|
1437 |
+
for checkpoint_key in loaded_keys:
|
1438 |
+
model_key = checkpoint_key
|
1439 |
+
|
1440 |
+
if (
|
1441 |
+
model_key in model_state_dict
|
1442 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
1443 |
+
):
|
1444 |
+
mismatched_keys.append(
|
1445 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
1446 |
+
)
|
1447 |
+
del state_dict[checkpoint_key]
|
1448 |
+
return mismatched_keys
|
1449 |
+
|
1450 |
+
if state_dict is not None:
|
1451 |
+
# Whole checkpoint
|
1452 |
+
mismatched_keys = _find_mismatched_keys(
|
1453 |
+
state_dict,
|
1454 |
+
model_state_dict,
|
1455 |
+
original_loaded_keys,
|
1456 |
+
ignore_mismatched_sizes,
|
1457 |
+
)
|
1458 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
1459 |
+
|
1460 |
+
if len(error_msgs) > 0:
|
1461 |
+
error_msg = "\n\t".join(error_msgs)
|
1462 |
+
if "size mismatch" in error_msg:
|
1463 |
+
error_msg += (
|
1464 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
1465 |
+
)
|
1466 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
1467 |
+
|
1468 |
+
if len(unexpected_keys) > 0:
|
1469 |
+
logger.warning(
|
1470 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
1471 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
1472 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
1473 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
1474 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
1475 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
1476 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
1477 |
+
" BertForSequenceClassification model)."
|
1478 |
+
)
|
1479 |
+
else:
|
1480 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
1481 |
+
if len(missing_keys) > 0:
|
1482 |
+
logger.warning(
|
1483 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1484 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
1485 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
1486 |
+
)
|
1487 |
+
elif len(mismatched_keys) == 0:
|
1488 |
+
logger.info(
|
1489 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
1490 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
1491 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
1492 |
+
" without further training."
|
1493 |
+
)
|
1494 |
+
if len(mismatched_keys) > 0:
|
1495 |
+
mismatched_warning = "\n".join(
|
1496 |
+
[
|
1497 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
1498 |
+
for key, shape1, shape2 in mismatched_keys
|
1499 |
+
]
|
1500 |
+
)
|
1501 |
+
logger.warning(
|
1502 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1503 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
1504 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
1505 |
+
" able to use it for predictions and inference."
|
1506 |
+
)
|
1507 |
+
|
1508 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
1509 |
+
|
2D_Stage/tuneavideo/models/unet_mv2d_ref.py
ADDED
@@ -0,0 +1,1570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from einops import rearrange
|
22 |
+
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
26 |
+
from diffusers.utils import BaseOutput, logging
|
27 |
+
from diffusers.models.activations import get_activation
|
28 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
29 |
+
from diffusers.models.embeddings import (
|
30 |
+
GaussianFourierProjection,
|
31 |
+
ImageHintTimeEmbedding,
|
32 |
+
ImageProjection,
|
33 |
+
ImageTimeEmbedding,
|
34 |
+
TextImageProjection,
|
35 |
+
TextImageTimeEmbedding,
|
36 |
+
TextTimeEmbedding,
|
37 |
+
TimestepEmbedding,
|
38 |
+
Timesteps,
|
39 |
+
)
|
40 |
+
from diffusers.models.lora import LoRALinearLayer
|
41 |
+
|
42 |
+
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
|
43 |
+
from diffusers.models.unet_2d_blocks import (
|
44 |
+
CrossAttnDownBlock2D,
|
45 |
+
CrossAttnUpBlock2D,
|
46 |
+
DownBlock2D,
|
47 |
+
UNetMidBlock2DCrossAttn,
|
48 |
+
UNetMidBlock2DSimpleCrossAttn,
|
49 |
+
UpBlock2D,
|
50 |
+
)
|
51 |
+
from diffusers.utils import (
|
52 |
+
CONFIG_NAME,
|
53 |
+
DIFFUSERS_CACHE,
|
54 |
+
FLAX_WEIGHTS_NAME,
|
55 |
+
HF_HUB_OFFLINE,
|
56 |
+
SAFETENSORS_WEIGHTS_NAME,
|
57 |
+
WEIGHTS_NAME,
|
58 |
+
_add_variant,
|
59 |
+
_get_model_file,
|
60 |
+
deprecate,
|
61 |
+
is_accelerate_available,
|
62 |
+
is_torch_version,
|
63 |
+
logging,
|
64 |
+
)
|
65 |
+
from diffusers import __version__
|
66 |
+
from tuneavideo.models.unet_mv2d_blocks import (
|
67 |
+
CrossAttnDownBlockMV2D,
|
68 |
+
CrossAttnUpBlockMV2D,
|
69 |
+
UNetMidBlockMV2DCrossAttn,
|
70 |
+
get_down_block,
|
71 |
+
get_up_block,
|
72 |
+
)
|
73 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
74 |
+
from diffusers.utils.import_utils import is_xformers_available
|
75 |
+
from tuneavideo.models.transformer_mv2d import XFormersMVAttnProcessor, MVAttnProcessor
|
76 |
+
from tuneavideo.models.refunet import ReferenceOnlyAttnProc
|
77 |
+
|
78 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
79 |
+
|
80 |
+
|
81 |
+
@dataclass
|
82 |
+
class UNetMV2DRefOutput(BaseOutput):
|
83 |
+
"""
|
84 |
+
The output of [`UNet2DConditionModel`].
|
85 |
+
|
86 |
+
Args:
|
87 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
88 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
89 |
+
"""
|
90 |
+
|
91 |
+
sample: torch.FloatTensor = None
|
92 |
+
|
93 |
+
class Identity(torch.nn.Module):
|
94 |
+
r"""A placeholder identity operator that is argument-insensitive.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
args: any argument (unused)
|
98 |
+
kwargs: any keyword argument (unused)
|
99 |
+
|
100 |
+
Shape:
|
101 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
102 |
+
- Output: :math:`(*)`, same shape as the input.
|
103 |
+
|
104 |
+
Examples::
|
105 |
+
|
106 |
+
>>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
|
107 |
+
>>> input = torch.randn(128, 20)
|
108 |
+
>>> output = m(input)
|
109 |
+
>>> print(output.size())
|
110 |
+
torch.Size([128, 20])
|
111 |
+
|
112 |
+
"""
|
113 |
+
def __init__(self, scale=None, *args, **kwargs) -> None:
|
114 |
+
super(Identity, self).__init__()
|
115 |
+
|
116 |
+
def forward(self, input, *args, **kwargs):
|
117 |
+
return input
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
class _LoRACompatibleLinear(nn.Module):
|
122 |
+
"""
|
123 |
+
A Linear layer that can be used with LoRA.
|
124 |
+
"""
|
125 |
+
|
126 |
+
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
|
127 |
+
super().__init__(*args, **kwargs)
|
128 |
+
self.lora_layer = lora_layer
|
129 |
+
|
130 |
+
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
|
131 |
+
self.lora_layer = lora_layer
|
132 |
+
|
133 |
+
def _fuse_lora(self):
|
134 |
+
pass
|
135 |
+
|
136 |
+
def _unfuse_lora(self):
|
137 |
+
pass
|
138 |
+
|
139 |
+
def forward(self, hidden_states, scale=None, lora_scale: int = 1):
|
140 |
+
return hidden_states
|
141 |
+
|
142 |
+
class UNetMV2DRefModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
143 |
+
r"""
|
144 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
145 |
+
shaped output.
|
146 |
+
|
147 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
148 |
+
for all models (such as downloading or saving).
|
149 |
+
|
150 |
+
Parameters:
|
151 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
152 |
+
Height and width of input/output sample.
|
153 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
154 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
155 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
156 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
157 |
+
Whether to flip the sin to cos in the time embedding.
|
158 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
159 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
160 |
+
The tuple of downsample blocks to use.
|
161 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
162 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
163 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
164 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
165 |
+
The tuple of upsample blocks to use.
|
166 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
167 |
+
Whether to include self-attention in the basic transformer blocks, see
|
168 |
+
[`~models.attention.BasicTransformerBlock`].
|
169 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
170 |
+
The tuple of output channels for each block.
|
171 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
172 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
173 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
174 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
175 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
176 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
177 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
178 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
179 |
+
The dimension of the cross attention features.
|
180 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
181 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
182 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
183 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
184 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
185 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
186 |
+
dimension to `cross_attention_dim`.
|
187 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
188 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
189 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
190 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
191 |
+
num_attention_heads (`int`, *optional*):
|
192 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
193 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
194 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
195 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
196 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
197 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
198 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
199 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
200 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
201 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
202 |
+
Dimension for the timestep embeddings.
|
203 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
204 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
205 |
+
class conditioning with `class_embed_type` equal to `None`.
|
206 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
207 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
208 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
209 |
+
An optional override for the dimension of the projected time embedding.
|
210 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
211 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
212 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
213 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
214 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
215 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
216 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
217 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
218 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
219 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
220 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
221 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
222 |
+
embeddings with the class embeddings.
|
223 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
224 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
225 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
226 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
227 |
+
otherwise.
|
228 |
+
"""
|
229 |
+
|
230 |
+
_supports_gradient_checkpointing = True
|
231 |
+
|
232 |
+
@register_to_config
|
233 |
+
def __init__(
|
234 |
+
self,
|
235 |
+
sample_size: Optional[int] = None,
|
236 |
+
in_channels: int = 4,
|
237 |
+
out_channels: int = 4,
|
238 |
+
center_input_sample: bool = False,
|
239 |
+
flip_sin_to_cos: bool = True,
|
240 |
+
freq_shift: int = 0,
|
241 |
+
down_block_types: Tuple[str] = (
|
242 |
+
"CrossAttnDownBlockMV2D",
|
243 |
+
"CrossAttnDownBlockMV2D",
|
244 |
+
"CrossAttnDownBlockMV2D",
|
245 |
+
"DownBlock2D",
|
246 |
+
),
|
247 |
+
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
|
248 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
|
249 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
250 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
251 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
252 |
+
downsample_padding: int = 1,
|
253 |
+
mid_block_scale_factor: float = 1,
|
254 |
+
act_fn: str = "silu",
|
255 |
+
norm_num_groups: Optional[int] = 32,
|
256 |
+
norm_eps: float = 1e-5,
|
257 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
258 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
259 |
+
encoder_hid_dim: Optional[int] = None,
|
260 |
+
encoder_hid_dim_type: Optional[str] = None,
|
261 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
262 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
263 |
+
dual_cross_attention: bool = False,
|
264 |
+
use_linear_projection: bool = False,
|
265 |
+
class_embed_type: Optional[str] = None,
|
266 |
+
addition_embed_type: Optional[str] = None,
|
267 |
+
addition_time_embed_dim: Optional[int] = None,
|
268 |
+
num_class_embeds: Optional[int] = None,
|
269 |
+
upcast_attention: bool = False,
|
270 |
+
resnet_time_scale_shift: str = "default",
|
271 |
+
resnet_skip_time_act: bool = False,
|
272 |
+
resnet_out_scale_factor: int = 1.0,
|
273 |
+
time_embedding_type: str = "positional",
|
274 |
+
time_embedding_dim: Optional[int] = None,
|
275 |
+
time_embedding_act_fn: Optional[str] = None,
|
276 |
+
timestep_post_act: Optional[str] = None,
|
277 |
+
time_cond_proj_dim: Optional[int] = None,
|
278 |
+
conv_in_kernel: int = 3,
|
279 |
+
conv_out_kernel: int = 3,
|
280 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
281 |
+
class_embeddings_concat: bool = False,
|
282 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
283 |
+
cross_attention_norm: Optional[str] = None,
|
284 |
+
addition_embed_type_num_heads=64,
|
285 |
+
num_views: int = 1,
|
286 |
+
joint_attention: bool = False,
|
287 |
+
joint_attention_twice: bool = False,
|
288 |
+
multiview_attention: bool = True,
|
289 |
+
cross_domain_attention: bool = False,
|
290 |
+
camera_input_dim: int = 12,
|
291 |
+
camera_hidden_dim: int = 320,
|
292 |
+
camera_output_dim: int = 1280,
|
293 |
+
|
294 |
+
):
|
295 |
+
super().__init__()
|
296 |
+
|
297 |
+
self.sample_size = sample_size
|
298 |
+
|
299 |
+
if num_attention_heads is not None:
|
300 |
+
raise ValueError(
|
301 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
302 |
+
)
|
303 |
+
|
304 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
305 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
306 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
307 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
308 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
309 |
+
# which is why we correct for the naming here.
|
310 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
311 |
+
|
312 |
+
# Check inputs
|
313 |
+
if len(down_block_types) != len(up_block_types):
|
314 |
+
raise ValueError(
|
315 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
316 |
+
)
|
317 |
+
|
318 |
+
if len(block_out_channels) != len(down_block_types):
|
319 |
+
raise ValueError(
|
320 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
321 |
+
)
|
322 |
+
|
323 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
324 |
+
raise ValueError(
|
325 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
326 |
+
)
|
327 |
+
|
328 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
329 |
+
raise ValueError(
|
330 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
331 |
+
)
|
332 |
+
|
333 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
334 |
+
raise ValueError(
|
335 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
336 |
+
)
|
337 |
+
|
338 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
339 |
+
raise ValueError(
|
340 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
341 |
+
)
|
342 |
+
|
343 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
344 |
+
raise ValueError(
|
345 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
346 |
+
)
|
347 |
+
|
348 |
+
# input
|
349 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
350 |
+
self.conv_in = nn.Conv2d(
|
351 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
352 |
+
)
|
353 |
+
|
354 |
+
# time
|
355 |
+
if time_embedding_type == "fourier":
|
356 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
357 |
+
if time_embed_dim % 2 != 0:
|
358 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
359 |
+
self.time_proj = GaussianFourierProjection(
|
360 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
361 |
+
)
|
362 |
+
timestep_input_dim = time_embed_dim
|
363 |
+
elif time_embedding_type == "positional":
|
364 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
365 |
+
|
366 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
367 |
+
timestep_input_dim = block_out_channels[0]
|
368 |
+
else:
|
369 |
+
raise ValueError(
|
370 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
371 |
+
)
|
372 |
+
|
373 |
+
self.time_embedding = TimestepEmbedding(
|
374 |
+
timestep_input_dim,
|
375 |
+
time_embed_dim,
|
376 |
+
act_fn=act_fn,
|
377 |
+
post_act_fn=timestep_post_act,
|
378 |
+
cond_proj_dim=time_cond_proj_dim,
|
379 |
+
)
|
380 |
+
|
381 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
382 |
+
encoder_hid_dim_type = "text_proj"
|
383 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
384 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
385 |
+
|
386 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
387 |
+
raise ValueError(
|
388 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
389 |
+
)
|
390 |
+
|
391 |
+
if encoder_hid_dim_type == "text_proj":
|
392 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
393 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
394 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
395 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
396 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
397 |
+
self.encoder_hid_proj = TextImageProjection(
|
398 |
+
text_embed_dim=encoder_hid_dim,
|
399 |
+
image_embed_dim=cross_attention_dim,
|
400 |
+
cross_attention_dim=cross_attention_dim,
|
401 |
+
)
|
402 |
+
elif encoder_hid_dim_type == "image_proj":
|
403 |
+
# Kandinsky 2.2
|
404 |
+
self.encoder_hid_proj = ImageProjection(
|
405 |
+
image_embed_dim=encoder_hid_dim,
|
406 |
+
cross_attention_dim=cross_attention_dim,
|
407 |
+
)
|
408 |
+
elif encoder_hid_dim_type is not None:
|
409 |
+
raise ValueError(
|
410 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
411 |
+
)
|
412 |
+
else:
|
413 |
+
self.encoder_hid_proj = None
|
414 |
+
|
415 |
+
# class embedding
|
416 |
+
if class_embed_type is None and num_class_embeds is not None:
|
417 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
418 |
+
elif class_embed_type == "timestep":
|
419 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
420 |
+
elif class_embed_type == "identity":
|
421 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
422 |
+
elif class_embed_type == "projection":
|
423 |
+
if projection_class_embeddings_input_dim is None:
|
424 |
+
raise ValueError(
|
425 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
426 |
+
)
|
427 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
428 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
429 |
+
# 2. it projects from an arbitrary input dimension.
|
430 |
+
#
|
431 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
432 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
433 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
434 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
435 |
+
elif class_embed_type == "simple_projection":
|
436 |
+
if projection_class_embeddings_input_dim is None:
|
437 |
+
raise ValueError(
|
438 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
439 |
+
)
|
440 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
441 |
+
else:
|
442 |
+
self.class_embedding = None
|
443 |
+
|
444 |
+
if addition_embed_type == "text":
|
445 |
+
if encoder_hid_dim is not None:
|
446 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
447 |
+
else:
|
448 |
+
text_time_embedding_from_dim = cross_attention_dim
|
449 |
+
|
450 |
+
self.add_embedding = TextTimeEmbedding(
|
451 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
452 |
+
)
|
453 |
+
elif addition_embed_type == "text_image":
|
454 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
455 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
456 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
457 |
+
self.add_embedding = TextImageTimeEmbedding(
|
458 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
459 |
+
)
|
460 |
+
elif addition_embed_type == "text_time":
|
461 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
462 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
463 |
+
elif addition_embed_type == "image":
|
464 |
+
# Kandinsky 2.2
|
465 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
466 |
+
elif addition_embed_type == "image_hint":
|
467 |
+
# Kandinsky 2.2 ControlNet
|
468 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
469 |
+
elif addition_embed_type is not None:
|
470 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
471 |
+
|
472 |
+
if time_embedding_act_fn is None:
|
473 |
+
self.time_embed_act = None
|
474 |
+
else:
|
475 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
476 |
+
|
477 |
+
self.camera_embedding = nn.Sequential(
|
478 |
+
nn.Linear(camera_input_dim, time_embed_dim),
|
479 |
+
nn.SiLU(),
|
480 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
481 |
+
)
|
482 |
+
|
483 |
+
self.down_blocks = nn.ModuleList([])
|
484 |
+
self.up_blocks = nn.ModuleList([])
|
485 |
+
|
486 |
+
if isinstance(only_cross_attention, bool):
|
487 |
+
if mid_block_only_cross_attention is None:
|
488 |
+
mid_block_only_cross_attention = only_cross_attention
|
489 |
+
|
490 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
491 |
+
|
492 |
+
if mid_block_only_cross_attention is None:
|
493 |
+
mid_block_only_cross_attention = False
|
494 |
+
|
495 |
+
if isinstance(num_attention_heads, int):
|
496 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
497 |
+
|
498 |
+
if isinstance(attention_head_dim, int):
|
499 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
500 |
+
|
501 |
+
if isinstance(cross_attention_dim, int):
|
502 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
503 |
+
|
504 |
+
if isinstance(layers_per_block, int):
|
505 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
506 |
+
|
507 |
+
if isinstance(transformer_layers_per_block, int):
|
508 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
509 |
+
|
510 |
+
if class_embeddings_concat:
|
511 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
512 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
513 |
+
# regular time embeddings
|
514 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
515 |
+
else:
|
516 |
+
blocks_time_embed_dim = time_embed_dim
|
517 |
+
|
518 |
+
# down
|
519 |
+
output_channel = block_out_channels[0]
|
520 |
+
for i, down_block_type in enumerate(down_block_types):
|
521 |
+
input_channel = output_channel
|
522 |
+
output_channel = block_out_channels[i]
|
523 |
+
is_final_block = i == len(block_out_channels) - 1
|
524 |
+
|
525 |
+
down_block = get_down_block(
|
526 |
+
down_block_type,
|
527 |
+
num_layers=layers_per_block[i],
|
528 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
529 |
+
in_channels=input_channel,
|
530 |
+
out_channels=output_channel,
|
531 |
+
temb_channels=blocks_time_embed_dim,
|
532 |
+
add_downsample=not is_final_block,
|
533 |
+
resnet_eps=norm_eps,
|
534 |
+
resnet_act_fn=act_fn,
|
535 |
+
resnet_groups=norm_num_groups,
|
536 |
+
cross_attention_dim=cross_attention_dim[i],
|
537 |
+
num_attention_heads=num_attention_heads[i],
|
538 |
+
downsample_padding=downsample_padding,
|
539 |
+
dual_cross_attention=dual_cross_attention,
|
540 |
+
use_linear_projection=use_linear_projection,
|
541 |
+
only_cross_attention=only_cross_attention[i],
|
542 |
+
upcast_attention=upcast_attention,
|
543 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
544 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
545 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
546 |
+
cross_attention_norm=cross_attention_norm,
|
547 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
548 |
+
num_views=num_views,
|
549 |
+
joint_attention=joint_attention,
|
550 |
+
joint_attention_twice=joint_attention_twice,
|
551 |
+
multiview_attention=multiview_attention,
|
552 |
+
cross_domain_attention=cross_domain_attention
|
553 |
+
)
|
554 |
+
self.down_blocks.append(down_block)
|
555 |
+
|
556 |
+
# mid
|
557 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
558 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
559 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
560 |
+
in_channels=block_out_channels[-1],
|
561 |
+
temb_channels=blocks_time_embed_dim,
|
562 |
+
resnet_eps=norm_eps,
|
563 |
+
resnet_act_fn=act_fn,
|
564 |
+
output_scale_factor=mid_block_scale_factor,
|
565 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
566 |
+
cross_attention_dim=cross_attention_dim[-1],
|
567 |
+
num_attention_heads=num_attention_heads[-1],
|
568 |
+
resnet_groups=norm_num_groups,
|
569 |
+
dual_cross_attention=dual_cross_attention,
|
570 |
+
use_linear_projection=use_linear_projection,
|
571 |
+
upcast_attention=upcast_attention,
|
572 |
+
)
|
573 |
+
# custom MV2D attention block
|
574 |
+
elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
|
575 |
+
self.mid_block = UNetMidBlockMV2DCrossAttn(
|
576 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
577 |
+
in_channels=block_out_channels[-1],
|
578 |
+
temb_channels=blocks_time_embed_dim,
|
579 |
+
resnet_eps=norm_eps,
|
580 |
+
resnet_act_fn=act_fn,
|
581 |
+
output_scale_factor=mid_block_scale_factor,
|
582 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
583 |
+
cross_attention_dim=cross_attention_dim[-1],
|
584 |
+
num_attention_heads=num_attention_heads[-1],
|
585 |
+
resnet_groups=norm_num_groups,
|
586 |
+
dual_cross_attention=dual_cross_attention,
|
587 |
+
use_linear_projection=use_linear_projection,
|
588 |
+
upcast_attention=upcast_attention,
|
589 |
+
num_views=num_views,
|
590 |
+
joint_attention=joint_attention,
|
591 |
+
joint_attention_twice=joint_attention_twice,
|
592 |
+
multiview_attention=multiview_attention,
|
593 |
+
cross_domain_attention=cross_domain_attention
|
594 |
+
)
|
595 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
596 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
597 |
+
in_channels=block_out_channels[-1],
|
598 |
+
temb_channels=blocks_time_embed_dim,
|
599 |
+
resnet_eps=norm_eps,
|
600 |
+
resnet_act_fn=act_fn,
|
601 |
+
output_scale_factor=mid_block_scale_factor,
|
602 |
+
cross_attention_dim=cross_attention_dim[-1],
|
603 |
+
attention_head_dim=attention_head_dim[-1],
|
604 |
+
resnet_groups=norm_num_groups,
|
605 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
606 |
+
skip_time_act=resnet_skip_time_act,
|
607 |
+
only_cross_attention=mid_block_only_cross_attention,
|
608 |
+
cross_attention_norm=cross_attention_norm,
|
609 |
+
)
|
610 |
+
elif mid_block_type is None:
|
611 |
+
self.mid_block = None
|
612 |
+
else:
|
613 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
614 |
+
|
615 |
+
# count how many layers upsample the images
|
616 |
+
self.num_upsamplers = 0
|
617 |
+
|
618 |
+
# up
|
619 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
620 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
621 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
622 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
623 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
624 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
625 |
+
|
626 |
+
output_channel = reversed_block_out_channels[0]
|
627 |
+
for i, up_block_type in enumerate(up_block_types):
|
628 |
+
is_final_block = i == len(block_out_channels) - 1
|
629 |
+
|
630 |
+
prev_output_channel = output_channel
|
631 |
+
output_channel = reversed_block_out_channels[i]
|
632 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
633 |
+
|
634 |
+
# add upsample block for all BUT final layer
|
635 |
+
if not is_final_block:
|
636 |
+
add_upsample = True
|
637 |
+
self.num_upsamplers += 1
|
638 |
+
else:
|
639 |
+
add_upsample = False
|
640 |
+
|
641 |
+
up_block = get_up_block(
|
642 |
+
up_block_type,
|
643 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
644 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
645 |
+
in_channels=input_channel,
|
646 |
+
out_channels=output_channel,
|
647 |
+
prev_output_channel=prev_output_channel,
|
648 |
+
temb_channels=blocks_time_embed_dim,
|
649 |
+
add_upsample=add_upsample,
|
650 |
+
resnet_eps=norm_eps,
|
651 |
+
resnet_act_fn=act_fn,
|
652 |
+
resnet_groups=norm_num_groups,
|
653 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
654 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
655 |
+
dual_cross_attention=dual_cross_attention,
|
656 |
+
use_linear_projection=use_linear_projection,
|
657 |
+
only_cross_attention=only_cross_attention[i],
|
658 |
+
upcast_attention=upcast_attention,
|
659 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
660 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
661 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
662 |
+
cross_attention_norm=cross_attention_norm,
|
663 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
664 |
+
num_views=num_views,
|
665 |
+
joint_attention=joint_attention,
|
666 |
+
joint_attention_twice=joint_attention_twice,
|
667 |
+
multiview_attention=multiview_attention,
|
668 |
+
cross_domain_attention=cross_domain_attention
|
669 |
+
)
|
670 |
+
self.up_blocks.append(up_block)
|
671 |
+
prev_output_channel = output_channel
|
672 |
+
|
673 |
+
# out
|
674 |
+
# if norm_num_groups is not None:
|
675 |
+
# self.conv_norm_out = nn.GroupNorm(
|
676 |
+
# num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
677 |
+
# )
|
678 |
+
|
679 |
+
# self.conv_act = get_activation(act_fn)
|
680 |
+
|
681 |
+
# else:
|
682 |
+
# self.conv_norm_out = None
|
683 |
+
# self.conv_act = None
|
684 |
+
|
685 |
+
# conv_out_padding = (conv_out_kernel - 1) // 2
|
686 |
+
# self.conv_out = nn.Conv2d(
|
687 |
+
# block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
688 |
+
# )
|
689 |
+
|
690 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_q = _LoRACompatibleLinear()
|
691 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_k = _LoRACompatibleLinear()
|
692 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_v = _LoRACompatibleLinear()
|
693 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_out = nn.ModuleList([Identity(), Identity()])
|
694 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].norm2 = Identity()
|
695 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn2 = None
|
696 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].norm3 = Identity()
|
697 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].ff = Identity()
|
698 |
+
self.up_blocks[3].attentions[2].proj_out = Identity()
|
699 |
+
|
700 |
+
@property
|
701 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
702 |
+
r"""
|
703 |
+
Returns:
|
704 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
705 |
+
indexed by its weight name.
|
706 |
+
"""
|
707 |
+
# set recursively
|
708 |
+
processors = {}
|
709 |
+
|
710 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
711 |
+
if hasattr(module, "set_processor"):
|
712 |
+
processors[f"{name}.processor"] = module.processor
|
713 |
+
|
714 |
+
for sub_name, child in module.named_children():
|
715 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
716 |
+
|
717 |
+
return processors
|
718 |
+
|
719 |
+
for name, module in self.named_children():
|
720 |
+
fn_recursive_add_processors(name, module, processors)
|
721 |
+
|
722 |
+
return processors
|
723 |
+
|
724 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
725 |
+
r"""
|
726 |
+
Sets the attention processor to use to compute attention.
|
727 |
+
|
728 |
+
Parameters:
|
729 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
730 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
731 |
+
for **all** `Attention` layers.
|
732 |
+
|
733 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
734 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
735 |
+
|
736 |
+
"""
|
737 |
+
count = len(self.attn_processors.keys())
|
738 |
+
|
739 |
+
if isinstance(processor, dict) and len(processor) != count:
|
740 |
+
raise ValueError(
|
741 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
742 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
743 |
+
)
|
744 |
+
|
745 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
746 |
+
if hasattr(module, "set_processor"):
|
747 |
+
if not isinstance(processor, dict):
|
748 |
+
module.set_processor(processor)
|
749 |
+
else:
|
750 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
751 |
+
|
752 |
+
for sub_name, child in module.named_children():
|
753 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
754 |
+
|
755 |
+
for name, module in self.named_children():
|
756 |
+
fn_recursive_attn_processor(name, module, processor)
|
757 |
+
|
758 |
+
def set_default_attn_processor(self):
|
759 |
+
"""
|
760 |
+
Disables custom attention processors and sets the default attention implementation.
|
761 |
+
"""
|
762 |
+
self.set_attn_processor(AttnProcessor())
|
763 |
+
|
764 |
+
def set_attention_slice(self, slice_size):
|
765 |
+
r"""
|
766 |
+
Enable sliced attention computation.
|
767 |
+
|
768 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
769 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
770 |
+
|
771 |
+
Args:
|
772 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
773 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
774 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
775 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
776 |
+
must be a multiple of `slice_size`.
|
777 |
+
"""
|
778 |
+
sliceable_head_dims = []
|
779 |
+
|
780 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
781 |
+
if hasattr(module, "set_attention_slice"):
|
782 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
783 |
+
|
784 |
+
for child in module.children():
|
785 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
786 |
+
|
787 |
+
# retrieve number of attention layers
|
788 |
+
for module in self.children():
|
789 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
790 |
+
|
791 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
792 |
+
|
793 |
+
if slice_size == "auto":
|
794 |
+
# half the attention head size is usually a good trade-off between
|
795 |
+
# speed and memory
|
796 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
797 |
+
elif slice_size == "max":
|
798 |
+
# make smallest slice possible
|
799 |
+
slice_size = num_sliceable_layers * [1]
|
800 |
+
|
801 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
802 |
+
|
803 |
+
if len(slice_size) != len(sliceable_head_dims):
|
804 |
+
raise ValueError(
|
805 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
806 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
807 |
+
)
|
808 |
+
|
809 |
+
for i in range(len(slice_size)):
|
810 |
+
size = slice_size[i]
|
811 |
+
dim = sliceable_head_dims[i]
|
812 |
+
if size is not None and size > dim:
|
813 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
814 |
+
|
815 |
+
# Recursively walk through all the children.
|
816 |
+
# Any children which exposes the set_attention_slice method
|
817 |
+
# gets the message
|
818 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
819 |
+
if hasattr(module, "set_attention_slice"):
|
820 |
+
module.set_attention_slice(slice_size.pop())
|
821 |
+
|
822 |
+
for child in module.children():
|
823 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
824 |
+
|
825 |
+
reversed_slice_size = list(reversed(slice_size))
|
826 |
+
for module in self.children():
|
827 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
828 |
+
|
829 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
830 |
+
if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)):
|
831 |
+
module.gradient_checkpointing = value
|
832 |
+
|
833 |
+
def forward(
|
834 |
+
self,
|
835 |
+
sample: torch.FloatTensor,
|
836 |
+
timestep: Union[torch.Tensor, float, int],
|
837 |
+
encoder_hidden_states: torch.Tensor,
|
838 |
+
camera_matrixs: Optional[torch.Tensor] = None,
|
839 |
+
class_labels: Optional[torch.Tensor] = None,
|
840 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
841 |
+
attention_mask: Optional[torch.Tensor] = None,
|
842 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
843 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
844 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
845 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
846 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
847 |
+
return_dict: bool = True,
|
848 |
+
) -> Union[UNetMV2DRefOutput, Tuple]:
|
849 |
+
r"""
|
850 |
+
The [`UNet2DConditionModel`] forward method.
|
851 |
+
|
852 |
+
Args:
|
853 |
+
sample (`torch.FloatTensor`):
|
854 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
855 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
856 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
857 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
858 |
+
encoder_attention_mask (`torch.Tensor`):
|
859 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
860 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
861 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
862 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
863 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
864 |
+
tuple.
|
865 |
+
cross_attention_kwargs (`dict`, *optional*):
|
866 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
867 |
+
added_cond_kwargs: (`dict`, *optional*):
|
868 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
869 |
+
are passed along to the UNet blocks.
|
870 |
+
|
871 |
+
Returns:
|
872 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
873 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
874 |
+
a `tuple` is returned where the first element is the sample tensor.
|
875 |
+
"""
|
876 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
877 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
878 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
879 |
+
# on the fly if necessary.
|
880 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
881 |
+
|
882 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
883 |
+
forward_upsample_size = False
|
884 |
+
upsample_size = None
|
885 |
+
|
886 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
887 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
888 |
+
forward_upsample_size = True
|
889 |
+
|
890 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
891 |
+
# expects mask of shape:
|
892 |
+
# [batch, key_tokens]
|
893 |
+
# adds singleton query_tokens dimension:
|
894 |
+
# [batch, 1, key_tokens]
|
895 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
896 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
897 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
898 |
+
if attention_mask is not None:
|
899 |
+
# assume that mask is expressed as:
|
900 |
+
# (1 = keep, 0 = discard)
|
901 |
+
# convert mask into a bias that can be added to attention scores:
|
902 |
+
# (keep = +0, discard = -10000.0)
|
903 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
904 |
+
attention_mask = attention_mask.unsqueeze(1)
|
905 |
+
|
906 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
907 |
+
if encoder_attention_mask is not None:
|
908 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
909 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
910 |
+
|
911 |
+
# 0. center input if necessary
|
912 |
+
if self.config.center_input_sample:
|
913 |
+
sample = 2 * sample - 1.0
|
914 |
+
|
915 |
+
# 1. time
|
916 |
+
timesteps = timestep
|
917 |
+
if not torch.is_tensor(timesteps):
|
918 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
919 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
920 |
+
is_mps = sample.device.type == "mps"
|
921 |
+
if isinstance(timestep, float):
|
922 |
+
dtype = torch.float32 if is_mps else torch.float64
|
923 |
+
else:
|
924 |
+
dtype = torch.int32 if is_mps else torch.int64
|
925 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
926 |
+
elif len(timesteps.shape) == 0:
|
927 |
+
timesteps = timesteps[None].to(sample.device)
|
928 |
+
|
929 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
930 |
+
timesteps = timesteps.expand(sample.shape[0])
|
931 |
+
|
932 |
+
t_emb = self.time_proj(timesteps)
|
933 |
+
|
934 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
935 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
936 |
+
# there might be better ways to encapsulate this.
|
937 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
938 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
939 |
+
|
940 |
+
# import pdb; pdb.set_trace()
|
941 |
+
if camera_matrixs is not None:
|
942 |
+
emb = torch.unsqueeze(emb, 1)
|
943 |
+
# came emb
|
944 |
+
cam_emb = self.camera_embedding(camera_matrixs)
|
945 |
+
# cam_emb = self.camera_embedding_2(cam_emb)
|
946 |
+
emb = emb.repeat(1,cam_emb.shape[1],1) #torch.Size([32, 4, 1280])
|
947 |
+
emb = emb + cam_emb
|
948 |
+
emb = rearrange(emb, "b f c -> (b f) c", f=emb.shape[1])
|
949 |
+
|
950 |
+
aug_emb = None
|
951 |
+
|
952 |
+
if self.class_embedding is not None and class_labels is not None:
|
953 |
+
if class_labels is None:
|
954 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
955 |
+
|
956 |
+
if self.config.class_embed_type == "timestep":
|
957 |
+
class_labels = self.time_proj(class_labels)
|
958 |
+
|
959 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
960 |
+
# there might be better ways to encapsulate this.
|
961 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
962 |
+
|
963 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
964 |
+
|
965 |
+
if self.config.class_embeddings_concat:
|
966 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
967 |
+
else:
|
968 |
+
emb = emb + class_emb
|
969 |
+
|
970 |
+
if self.config.addition_embed_type == "text":
|
971 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
972 |
+
elif self.config.addition_embed_type == "text_image":
|
973 |
+
# Kandinsky 2.1 - style
|
974 |
+
if "image_embeds" not in added_cond_kwargs:
|
975 |
+
raise ValueError(
|
976 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
977 |
+
)
|
978 |
+
|
979 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
980 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
981 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
982 |
+
elif self.config.addition_embed_type == "text_time":
|
983 |
+
# SDXL - style
|
984 |
+
if "text_embeds" not in added_cond_kwargs:
|
985 |
+
raise ValueError(
|
986 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
987 |
+
)
|
988 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
989 |
+
if "time_ids" not in added_cond_kwargs:
|
990 |
+
raise ValueError(
|
991 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
992 |
+
)
|
993 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
994 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
995 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
996 |
+
|
997 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
998 |
+
add_embeds = add_embeds.to(emb.dtype)
|
999 |
+
aug_emb = self.add_embedding(add_embeds)
|
1000 |
+
elif self.config.addition_embed_type == "image":
|
1001 |
+
# Kandinsky 2.2 - style
|
1002 |
+
if "image_embeds" not in added_cond_kwargs:
|
1003 |
+
raise ValueError(
|
1004 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1005 |
+
)
|
1006 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1007 |
+
aug_emb = self.add_embedding(image_embs)
|
1008 |
+
elif self.config.addition_embed_type == "image_hint":
|
1009 |
+
# Kandinsky 2.2 - style
|
1010 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1011 |
+
raise ValueError(
|
1012 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1013 |
+
)
|
1014 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1015 |
+
hint = added_cond_kwargs.get("hint")
|
1016 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1017 |
+
sample = torch.cat([sample, hint], dim=1)
|
1018 |
+
|
1019 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1020 |
+
|
1021 |
+
if self.time_embed_act is not None:
|
1022 |
+
emb = self.time_embed_act(emb)
|
1023 |
+
|
1024 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1025 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1026 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1027 |
+
# Kadinsky 2.1 - style
|
1028 |
+
if "image_embeds" not in added_cond_kwargs:
|
1029 |
+
raise ValueError(
|
1030 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1034 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1035 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1036 |
+
# Kandinsky 2.2 - style
|
1037 |
+
if "image_embeds" not in added_cond_kwargs:
|
1038 |
+
raise ValueError(
|
1039 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1040 |
+
)
|
1041 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1042 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1043 |
+
# 2. pre-process
|
1044 |
+
sample = rearrange(sample, "b c f h w -> (b f) c h w", f=sample.shape[2])
|
1045 |
+
sample = self.conv_in(sample)
|
1046 |
+
# 3. down
|
1047 |
+
|
1048 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1049 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
1050 |
+
|
1051 |
+
down_block_res_samples = (sample,)
|
1052 |
+
for downsample_block in self.down_blocks:
|
1053 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1054 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1055 |
+
additional_residuals = {}
|
1056 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1057 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
1058 |
+
|
1059 |
+
sample, res_samples = downsample_block(
|
1060 |
+
hidden_states=sample,
|
1061 |
+
temb=emb,
|
1062 |
+
encoder_hidden_states=encoder_hidden_states,
|
1063 |
+
attention_mask=attention_mask,
|
1064 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1065 |
+
encoder_attention_mask=encoder_attention_mask,
|
1066 |
+
**additional_residuals,
|
1067 |
+
)
|
1068 |
+
else:
|
1069 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1070 |
+
|
1071 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1072 |
+
sample += down_block_additional_residuals.pop(0)
|
1073 |
+
|
1074 |
+
down_block_res_samples += res_samples
|
1075 |
+
|
1076 |
+
if is_controlnet:
|
1077 |
+
new_down_block_res_samples = ()
|
1078 |
+
|
1079 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1080 |
+
down_block_res_samples, down_block_additional_residuals
|
1081 |
+
):
|
1082 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1083 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1084 |
+
|
1085 |
+
down_block_res_samples = new_down_block_res_samples
|
1086 |
+
# print("after down: ", sample.mean(), emb.mean())
|
1087 |
+
|
1088 |
+
# 4. mid
|
1089 |
+
if self.mid_block is not None:
|
1090 |
+
sample = self.mid_block(
|
1091 |
+
sample,
|
1092 |
+
emb,
|
1093 |
+
encoder_hidden_states=encoder_hidden_states,
|
1094 |
+
attention_mask=attention_mask,
|
1095 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1096 |
+
encoder_attention_mask=encoder_attention_mask,
|
1097 |
+
)
|
1098 |
+
|
1099 |
+
if is_controlnet:
|
1100 |
+
sample = sample + mid_block_additional_residual
|
1101 |
+
|
1102 |
+
# print("after mid: ", sample.mean())
|
1103 |
+
# 5. up
|
1104 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1105 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1106 |
+
|
1107 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1108 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1109 |
+
|
1110 |
+
# if we have not reached the final block and need to forward the
|
1111 |
+
# upsample size, we do it here
|
1112 |
+
if not is_final_block and forward_upsample_size:
|
1113 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1114 |
+
|
1115 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1116 |
+
sample = upsample_block(
|
1117 |
+
hidden_states=sample,
|
1118 |
+
temb=emb,
|
1119 |
+
res_hidden_states_tuple=res_samples,
|
1120 |
+
encoder_hidden_states=encoder_hidden_states,
|
1121 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1122 |
+
upsample_size=upsample_size,
|
1123 |
+
attention_mask=attention_mask,
|
1124 |
+
encoder_attention_mask=encoder_attention_mask,
|
1125 |
+
)
|
1126 |
+
else:
|
1127 |
+
sample = upsample_block(
|
1128 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
# 6. post-process
|
1132 |
+
# if self.conv_norm_out:
|
1133 |
+
# sample = self.conv_norm_out(sample)
|
1134 |
+
# sample = self.conv_act(sample)
|
1135 |
+
# sample = self.conv_out(sample)
|
1136 |
+
|
1137 |
+
if not return_dict:
|
1138 |
+
return (sample,)
|
1139 |
+
|
1140 |
+
return UNetMV2DRefOutput(sample=sample)
|
1141 |
+
|
1142 |
+
@classmethod
|
1143 |
+
def from_pretrained_2d(
|
1144 |
+
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
1145 |
+
camera_embedding_type: str, num_views: int, sample_size: int,
|
1146 |
+
zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False,
|
1147 |
+
projection_class_embeddings_input_dim: int=6, joint_attention: bool = False,
|
1148 |
+
joint_attention_twice: bool = False, multiview_attention: bool = True,
|
1149 |
+
cross_domain_attention: bool = False,
|
1150 |
+
in_channels: int = 8, out_channels: int = 4, local_crossattn=False,
|
1151 |
+
**kwargs
|
1152 |
+
):
|
1153 |
+
r"""
|
1154 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
1155 |
+
|
1156 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
1157 |
+
train the model, set it back in training mode with `model.train()`.
|
1158 |
+
|
1159 |
+
Parameters:
|
1160 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
1161 |
+
Can be either:
|
1162 |
+
|
1163 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
1164 |
+
the Hub.
|
1165 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
1166 |
+
with [`~ModelMixin.save_pretrained`].
|
1167 |
+
|
1168 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
1169 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
1170 |
+
is not used.
|
1171 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
1172 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
1173 |
+
dtype is automatically derived from the model's weights.
|
1174 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
1175 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
1176 |
+
cached versions if they exist.
|
1177 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
1178 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
1179 |
+
incompletely downloaded files are deleted.
|
1180 |
+
proxies (`Dict[str, str]`, *optional*):
|
1181 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
1182 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
1183 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
1184 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
1185 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
1186 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
1187 |
+
won't be downloaded from the Hub.
|
1188 |
+
use_auth_token (`str` or *bool*, *optional*):
|
1189 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
1190 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
1191 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
1192 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
1193 |
+
allowed by Git.
|
1194 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
1195 |
+
Load the model weights from a Flax checkpoint save file.
|
1196 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
1197 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
1198 |
+
mirror (`str`, *optional*):
|
1199 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
1200 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
1201 |
+
information.
|
1202 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1203 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
1204 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
1205 |
+
same device.
|
1206 |
+
|
1207 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
1208 |
+
more information about each option see [designing a device
|
1209 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
1210 |
+
max_memory (`Dict`, *optional*):
|
1211 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
1212 |
+
each GPU and the available CPU RAM if unset.
|
1213 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
1214 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
1215 |
+
offload_state_dict (`bool`, *optional*):
|
1216 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
1217 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
1218 |
+
when there is some disk offload.
|
1219 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
1220 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
1221 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
1222 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
1223 |
+
argument to `True` will raise an error.
|
1224 |
+
variant (`str`, *optional*):
|
1225 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
1226 |
+
loading `from_flax`.
|
1227 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
1228 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
1229 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
1230 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
1231 |
+
|
1232 |
+
<Tip>
|
1233 |
+
|
1234 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
1235 |
+
`huggingface-cli login`. You can also activate the special
|
1236 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
1237 |
+
firewalled environment.
|
1238 |
+
|
1239 |
+
</Tip>
|
1240 |
+
|
1241 |
+
Example:
|
1242 |
+
|
1243 |
+
```py
|
1244 |
+
from diffusers import UNet2DConditionModel
|
1245 |
+
|
1246 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
1247 |
+
```
|
1248 |
+
|
1249 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
1250 |
+
|
1251 |
+
```bash
|
1252 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
1253 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
1254 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
1255 |
+
```
|
1256 |
+
"""
|
1257 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
1258 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
1259 |
+
force_download = kwargs.pop("force_download", False)
|
1260 |
+
from_flax = kwargs.pop("from_flax", False)
|
1261 |
+
resume_download = kwargs.pop("resume_download", False)
|
1262 |
+
proxies = kwargs.pop("proxies", None)
|
1263 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
1264 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1265 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1266 |
+
revision = kwargs.pop("revision", None)
|
1267 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
1268 |
+
subfolder = kwargs.pop("subfolder", None)
|
1269 |
+
device_map = kwargs.pop("device_map", None)
|
1270 |
+
max_memory = kwargs.pop("max_memory", None)
|
1271 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
1272 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1273 |
+
variant = kwargs.pop("variant", None)
|
1274 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1275 |
+
|
1276 |
+
# if use_safetensors and not is_safetensors_available():
|
1277 |
+
# raise ValueError(
|
1278 |
+
# "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
|
1279 |
+
# )
|
1280 |
+
|
1281 |
+
allow_pickle = False
|
1282 |
+
if use_safetensors is None:
|
1283 |
+
# use_safetensors = is_safetensors_available()
|
1284 |
+
use_safetensors = False
|
1285 |
+
allow_pickle = True
|
1286 |
+
|
1287 |
+
if device_map is not None and not is_accelerate_available():
|
1288 |
+
raise NotImplementedError(
|
1289 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
1290 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
# Check if we can handle device_map and dispatching the weights
|
1294 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1295 |
+
raise NotImplementedError(
|
1296 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1297 |
+
" `device_map=None`."
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
# Load config if we don't provide a configuration
|
1301 |
+
config_path = pretrained_model_name_or_path
|
1302 |
+
|
1303 |
+
user_agent = {
|
1304 |
+
"diffusers": __version__,
|
1305 |
+
"file_type": "model",
|
1306 |
+
"framework": "pytorch",
|
1307 |
+
}
|
1308 |
+
|
1309 |
+
# load config
|
1310 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
1311 |
+
config_path,
|
1312 |
+
cache_dir=cache_dir,
|
1313 |
+
return_unused_kwargs=True,
|
1314 |
+
return_commit_hash=True,
|
1315 |
+
force_download=force_download,
|
1316 |
+
resume_download=resume_download,
|
1317 |
+
proxies=proxies,
|
1318 |
+
local_files_only=local_files_only,
|
1319 |
+
use_auth_token=use_auth_token,
|
1320 |
+
revision=revision,
|
1321 |
+
subfolder=subfolder,
|
1322 |
+
device_map=device_map,
|
1323 |
+
max_memory=max_memory,
|
1324 |
+
offload_folder=offload_folder,
|
1325 |
+
offload_state_dict=offload_state_dict,
|
1326 |
+
user_agent=user_agent,
|
1327 |
+
**kwargs,
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
# modify config
|
1331 |
+
config["_class_name"] = cls.__name__
|
1332 |
+
config['in_channels'] = in_channels
|
1333 |
+
config['out_channels'] = out_channels
|
1334 |
+
config['sample_size'] = sample_size # training resolution
|
1335 |
+
config['num_views'] = num_views
|
1336 |
+
config['joint_attention'] = joint_attention
|
1337 |
+
config['joint_attention_twice'] = joint_attention_twice
|
1338 |
+
config['multiview_attention'] = multiview_attention
|
1339 |
+
config['cross_domain_attention'] = cross_domain_attention
|
1340 |
+
config["down_block_types"] = [
|
1341 |
+
"CrossAttnDownBlockMV2D",
|
1342 |
+
"CrossAttnDownBlockMV2D",
|
1343 |
+
"CrossAttnDownBlockMV2D",
|
1344 |
+
"DownBlock2D"
|
1345 |
+
]
|
1346 |
+
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
|
1347 |
+
config["up_block_types"] = [
|
1348 |
+
"UpBlock2D",
|
1349 |
+
"CrossAttnUpBlockMV2D",
|
1350 |
+
"CrossAttnUpBlockMV2D",
|
1351 |
+
"CrossAttnUpBlockMV2D"
|
1352 |
+
]
|
1353 |
+
config['class_embed_type'] = 'projection'
|
1354 |
+
if camera_embedding_type == 'e_de_da_sincos':
|
1355 |
+
config['projection_class_embeddings_input_dim'] = projection_class_embeddings_input_dim # default 6
|
1356 |
+
else:
|
1357 |
+
raise NotImplementedError
|
1358 |
+
|
1359 |
+
# load model
|
1360 |
+
model_file = None
|
1361 |
+
if from_flax:
|
1362 |
+
raise NotImplementedError
|
1363 |
+
else:
|
1364 |
+
if use_safetensors:
|
1365 |
+
try:
|
1366 |
+
model_file = _get_model_file(
|
1367 |
+
pretrained_model_name_or_path,
|
1368 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
1369 |
+
cache_dir=cache_dir,
|
1370 |
+
force_download=force_download,
|
1371 |
+
resume_download=resume_download,
|
1372 |
+
proxies=proxies,
|
1373 |
+
local_files_only=local_files_only,
|
1374 |
+
use_auth_token=use_auth_token,
|
1375 |
+
revision=revision,
|
1376 |
+
subfolder=subfolder,
|
1377 |
+
user_agent=user_agent,
|
1378 |
+
commit_hash=commit_hash,
|
1379 |
+
)
|
1380 |
+
except IOError as e:
|
1381 |
+
if not allow_pickle:
|
1382 |
+
raise e
|
1383 |
+
pass
|
1384 |
+
if model_file is None:
|
1385 |
+
model_file = _get_model_file(
|
1386 |
+
pretrained_model_name_or_path,
|
1387 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
1388 |
+
cache_dir=cache_dir,
|
1389 |
+
force_download=force_download,
|
1390 |
+
resume_download=resume_download,
|
1391 |
+
proxies=proxies,
|
1392 |
+
local_files_only=local_files_only,
|
1393 |
+
use_auth_token=use_auth_token,
|
1394 |
+
revision=revision,
|
1395 |
+
subfolder=subfolder,
|
1396 |
+
user_agent=user_agent,
|
1397 |
+
commit_hash=commit_hash,
|
1398 |
+
)
|
1399 |
+
|
1400 |
+
model = cls.from_config(config, **unused_kwargs)
|
1401 |
+
if local_crossattn:
|
1402 |
+
unet_lora_attn_procs = dict()
|
1403 |
+
for name, _ in model.attn_processors.items():
|
1404 |
+
if not name.endswith("attn1.processor"):
|
1405 |
+
default_attn_proc = AttnProcessor()
|
1406 |
+
elif is_xformers_available():
|
1407 |
+
default_attn_proc = XFormersMVAttnProcessor()
|
1408 |
+
else:
|
1409 |
+
default_attn_proc = MVAttnProcessor()
|
1410 |
+
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
1411 |
+
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
|
1412 |
+
)
|
1413 |
+
model.set_attn_processor(unet_lora_attn_procs)
|
1414 |
+
state_dict = load_state_dict(model_file, variant=variant)
|
1415 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1416 |
+
|
1417 |
+
conv_in_weight = state_dict['conv_in.weight']
|
1418 |
+
conv_out_weight = state_dict['conv_out.weight']
|
1419 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
|
1420 |
+
model,
|
1421 |
+
state_dict,
|
1422 |
+
model_file,
|
1423 |
+
pretrained_model_name_or_path,
|
1424 |
+
ignore_mismatched_sizes=True,
|
1425 |
+
)
|
1426 |
+
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
|
1427 |
+
# initialize from the original SD structure
|
1428 |
+
model.conv_in.weight.data[:,:4] = conv_in_weight
|
1429 |
+
|
1430 |
+
# whether to place all zero to new layers?
|
1431 |
+
if zero_init_conv_in:
|
1432 |
+
model.conv_in.weight.data[:,4:] = 0.
|
1433 |
+
|
1434 |
+
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
|
1435 |
+
# initialize from the original SD structure
|
1436 |
+
model.conv_out.weight.data[:,:4] = conv_out_weight
|
1437 |
+
if out_channels == 8: # copy for the last 4 channels
|
1438 |
+
model.conv_out.weight.data[:, 4:] = conv_out_weight
|
1439 |
+
|
1440 |
+
if zero_init_camera_projection:
|
1441 |
+
for p in model.class_embedding.parameters():
|
1442 |
+
torch.nn.init.zeros_(p)
|
1443 |
+
|
1444 |
+
loading_info = {
|
1445 |
+
"missing_keys": missing_keys,
|
1446 |
+
"unexpected_keys": unexpected_keys,
|
1447 |
+
"mismatched_keys": mismatched_keys,
|
1448 |
+
"error_msgs": error_msgs,
|
1449 |
+
}
|
1450 |
+
|
1451 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
1452 |
+
raise ValueError(
|
1453 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
1454 |
+
)
|
1455 |
+
elif torch_dtype is not None:
|
1456 |
+
model = model.to(torch_dtype)
|
1457 |
+
|
1458 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1459 |
+
|
1460 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1461 |
+
model.eval()
|
1462 |
+
if output_loading_info:
|
1463 |
+
return model, loading_info
|
1464 |
+
|
1465 |
+
return model
|
1466 |
+
|
1467 |
+
@classmethod
|
1468 |
+
def _load_pretrained_model_2d(
|
1469 |
+
cls,
|
1470 |
+
model,
|
1471 |
+
state_dict,
|
1472 |
+
resolved_archive_file,
|
1473 |
+
pretrained_model_name_or_path,
|
1474 |
+
ignore_mismatched_sizes=False,
|
1475 |
+
):
|
1476 |
+
# Retrieve missing & unexpected_keys
|
1477 |
+
model_state_dict = model.state_dict()
|
1478 |
+
loaded_keys = list(state_dict.keys())
|
1479 |
+
|
1480 |
+
expected_keys = list(model_state_dict.keys())
|
1481 |
+
|
1482 |
+
original_loaded_keys = loaded_keys
|
1483 |
+
|
1484 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
1485 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
1486 |
+
|
1487 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
1488 |
+
model_to_load = model
|
1489 |
+
|
1490 |
+
def _find_mismatched_keys(
|
1491 |
+
state_dict,
|
1492 |
+
model_state_dict,
|
1493 |
+
loaded_keys,
|
1494 |
+
ignore_mismatched_sizes,
|
1495 |
+
):
|
1496 |
+
mismatched_keys = []
|
1497 |
+
if ignore_mismatched_sizes:
|
1498 |
+
for checkpoint_key in loaded_keys:
|
1499 |
+
model_key = checkpoint_key
|
1500 |
+
|
1501 |
+
if (
|
1502 |
+
model_key in model_state_dict
|
1503 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
1504 |
+
):
|
1505 |
+
mismatched_keys.append(
|
1506 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
1507 |
+
)
|
1508 |
+
del state_dict[checkpoint_key]
|
1509 |
+
return mismatched_keys
|
1510 |
+
|
1511 |
+
if state_dict is not None:
|
1512 |
+
# Whole checkpoint
|
1513 |
+
mismatched_keys = _find_mismatched_keys(
|
1514 |
+
state_dict,
|
1515 |
+
model_state_dict,
|
1516 |
+
original_loaded_keys,
|
1517 |
+
ignore_mismatched_sizes,
|
1518 |
+
)
|
1519 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
1520 |
+
|
1521 |
+
if len(error_msgs) > 0:
|
1522 |
+
error_msg = "\n\t".join(error_msgs)
|
1523 |
+
if "size mismatch" in error_msg:
|
1524 |
+
error_msg += (
|
1525 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
1526 |
+
)
|
1527 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
1528 |
+
|
1529 |
+
if len(unexpected_keys) > 0:
|
1530 |
+
logger.warning(
|
1531 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
1532 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
1533 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
1534 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
1535 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
1536 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
1537 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
1538 |
+
" BertForSequenceClassification model)."
|
1539 |
+
)
|
1540 |
+
else:
|
1541 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
1542 |
+
if len(missing_keys) > 0:
|
1543 |
+
logger.warning(
|
1544 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1545 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
1546 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
1547 |
+
)
|
1548 |
+
elif len(mismatched_keys) == 0:
|
1549 |
+
logger.info(
|
1550 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
1551 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
1552 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
1553 |
+
" without further training."
|
1554 |
+
)
|
1555 |
+
if len(mismatched_keys) > 0:
|
1556 |
+
mismatched_warning = "\n".join(
|
1557 |
+
[
|
1558 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
1559 |
+
for key, shape1, shape2 in mismatched_keys
|
1560 |
+
]
|
1561 |
+
)
|
1562 |
+
logger.warning(
|
1563 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1564 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
1565 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
1566 |
+
" able to use it for predictions and inference."
|
1567 |
+
)
|
1568 |
+
|
1569 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
1570 |
+
|
2D_Stage/tuneavideo/pipelines/__pycache__/pipeline_tuneavideo.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
2D_Stage/tuneavideo/pipelines/pipeline_tuneavideo.py
ADDED
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
2 |
+
|
3 |
+
import tqdm
|
4 |
+
|
5 |
+
import inspect
|
6 |
+
from typing import Callable, List, Optional, Union
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from diffusers.utils import is_accelerate_available
|
13 |
+
from packaging import version
|
14 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
15 |
+
import torchvision.transforms.functional as TF
|
16 |
+
|
17 |
+
from diffusers.configuration_utils import FrozenDict
|
18 |
+
from diffusers.models import AutoencoderKL
|
19 |
+
from diffusers import DiffusionPipeline
|
20 |
+
from diffusers.schedulers import (
|
21 |
+
DDIMScheduler,
|
22 |
+
DPMSolverMultistepScheduler,
|
23 |
+
EulerAncestralDiscreteScheduler,
|
24 |
+
EulerDiscreteScheduler,
|
25 |
+
LMSDiscreteScheduler,
|
26 |
+
PNDMScheduler,
|
27 |
+
)
|
28 |
+
from diffusers.utils import deprecate, logging, BaseOutput
|
29 |
+
|
30 |
+
from einops import rearrange
|
31 |
+
|
32 |
+
from ..models.unet import UNet3DConditionModel
|
33 |
+
from torchvision.transforms import InterpolationMode
|
34 |
+
|
35 |
+
import ipdb
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class TuneAVideoPipelineOutput(BaseOutput):
|
42 |
+
videos: Union[torch.Tensor, np.ndarray]
|
43 |
+
|
44 |
+
|
45 |
+
class TuneAVideoPipeline(DiffusionPipeline):
|
46 |
+
_optional_components = []
|
47 |
+
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
vae: AutoencoderKL,
|
51 |
+
text_encoder: CLIPTextModel,
|
52 |
+
tokenizer: CLIPTokenizer,
|
53 |
+
unet: UNet3DConditionModel,
|
54 |
+
|
55 |
+
scheduler: Union[
|
56 |
+
DDIMScheduler,
|
57 |
+
PNDMScheduler,
|
58 |
+
LMSDiscreteScheduler,
|
59 |
+
EulerDiscreteScheduler,
|
60 |
+
EulerAncestralDiscreteScheduler,
|
61 |
+
DPMSolverMultistepScheduler,
|
62 |
+
],
|
63 |
+
ref_unet = None,
|
64 |
+
feature_extractor=None,
|
65 |
+
image_encoder=None
|
66 |
+
):
|
67 |
+
super().__init__()
|
68 |
+
self.ref_unet = ref_unet
|
69 |
+
self.feature_extractor = feature_extractor
|
70 |
+
self.image_encoder = image_encoder
|
71 |
+
|
72 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
73 |
+
deprecation_message = (
|
74 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
75 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
76 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
77 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
78 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
79 |
+
" file"
|
80 |
+
)
|
81 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
82 |
+
new_config = dict(scheduler.config)
|
83 |
+
new_config["steps_offset"] = 1
|
84 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
85 |
+
|
86 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
87 |
+
deprecation_message = (
|
88 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
89 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
90 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
91 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
92 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
93 |
+
)
|
94 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
95 |
+
new_config = dict(scheduler.config)
|
96 |
+
new_config["clip_sample"] = False
|
97 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
98 |
+
|
99 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
100 |
+
version.parse(unet.config._diffusers_version).base_version
|
101 |
+
) < version.parse("0.9.0.dev0")
|
102 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
103 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
104 |
+
deprecation_message = (
|
105 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
106 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
107 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
108 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
109 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
110 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
111 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
112 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
113 |
+
" the `unet/config.json` file"
|
114 |
+
)
|
115 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
116 |
+
new_config = dict(unet.config)
|
117 |
+
new_config["sample_size"] = 64
|
118 |
+
unet._internal_dict = FrozenDict(new_config)
|
119 |
+
|
120 |
+
self.register_modules(
|
121 |
+
vae=vae,
|
122 |
+
text_encoder=text_encoder,
|
123 |
+
tokenizer=tokenizer,
|
124 |
+
unet=unet,
|
125 |
+
scheduler=scheduler,
|
126 |
+
)
|
127 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
128 |
+
|
129 |
+
def enable_vae_slicing(self):
|
130 |
+
self.vae.enable_slicing()
|
131 |
+
|
132 |
+
def disable_vae_slicing(self):
|
133 |
+
self.vae.disable_slicing()
|
134 |
+
|
135 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
136 |
+
if is_accelerate_available():
|
137 |
+
from accelerate import cpu_offload
|
138 |
+
else:
|
139 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
140 |
+
|
141 |
+
device = torch.device(f"cuda:{gpu_id}")
|
142 |
+
|
143 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
144 |
+
if cpu_offloaded_model is not None:
|
145 |
+
cpu_offload(cpu_offloaded_model, device)
|
146 |
+
|
147 |
+
|
148 |
+
@property
|
149 |
+
def _execution_device(self):
|
150 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
151 |
+
return self.device
|
152 |
+
for module in self.unet.modules():
|
153 |
+
if (
|
154 |
+
hasattr(module, "_hf_hook")
|
155 |
+
and hasattr(module._hf_hook, "execution_device")
|
156 |
+
and module._hf_hook.execution_device is not None
|
157 |
+
):
|
158 |
+
return torch.device(module._hf_hook.execution_device)
|
159 |
+
return self.device
|
160 |
+
|
161 |
+
def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance, img_proj=None):
|
162 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
163 |
+
|
164 |
+
# image_pt = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values
|
165 |
+
# image_pt = image_pt.to(device=device, dtype=dtype)
|
166 |
+
# image_embeddings = self.image_encoder(image_pt).image_embeds
|
167 |
+
# image_embeddings = image_embeddings.unsqueeze(1)
|
168 |
+
|
169 |
+
# # image encoding
|
170 |
+
clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device, dtype=torch.float32)
|
171 |
+
clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device, dtype=torch.float32)
|
172 |
+
imgs_in_proc = TF.resize(image_pil, (self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']), interpolation=InterpolationMode.BICUBIC)
|
173 |
+
# do the normalization in float32 to preserve precision
|
174 |
+
imgs_in_proc = ((imgs_in_proc.float() - clip_image_mean) / clip_image_std).to(dtype)
|
175 |
+
if img_proj is None:
|
176 |
+
# (B*Nv, 1, 768)
|
177 |
+
image_embeddings = self.image_encoder(imgs_in_proc).image_embeds.unsqueeze(1)
|
178 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
179 |
+
# Note: repeat differently from official pipelines
|
180 |
+
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
|
181 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
182 |
+
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
|
183 |
+
if do_classifier_free_guidance:
|
184 |
+
negative_prompt_embeds = torch.zeros_like(image_embeddings)
|
185 |
+
|
186 |
+
# For classifier free guidance, we need to do two forward passes.
|
187 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
188 |
+
# to avoid doing two forward passes
|
189 |
+
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
|
190 |
+
else:
|
191 |
+
if do_classifier_free_guidance:
|
192 |
+
negative_image_proc = torch.zeros_like(imgs_in_proc)
|
193 |
+
|
194 |
+
# For classifier free guidance, we need to do two forward passes.
|
195 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
196 |
+
# to avoid doing two forward passes
|
197 |
+
imgs_in_proc = torch.cat([negative_image_proc, imgs_in_proc])
|
198 |
+
|
199 |
+
image_embeds = image_encoder(imgs_in_proc, output_hidden_states=True).hidden_states[-2]
|
200 |
+
image_embeddings = img_proj(image_embeds)
|
201 |
+
|
202 |
+
# image_embeddings_unet = rearrange(image_embeddings_unet, 'B Nv d c -> (B Nv) d c')
|
203 |
+
|
204 |
+
# image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device)
|
205 |
+
# image_pil = image_pil * 2.0 - 1.0
|
206 |
+
image_latents = self.vae.encode(image_pil* 2.0 - 1.0).latent_dist.mode() * self.vae.config.scaling_factor
|
207 |
+
|
208 |
+
# Note: repeat differently from official pipelines
|
209 |
+
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
|
210 |
+
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)
|
211 |
+
|
212 |
+
# if do_classifier_free_guidance:
|
213 |
+
# image_latents = torch.cat([torch.zeros_like(image_latents), image_latents])
|
214 |
+
|
215 |
+
return image_embeddings, image_latents
|
216 |
+
|
217 |
+
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
|
218 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
219 |
+
|
220 |
+
text_inputs = self.tokenizer(
|
221 |
+
prompt,
|
222 |
+
padding="max_length",
|
223 |
+
max_length=self.tokenizer.model_max_length,
|
224 |
+
truncation=True,
|
225 |
+
return_tensors="pt",
|
226 |
+
)
|
227 |
+
text_input_ids = text_inputs.input_ids
|
228 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
229 |
+
|
230 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
231 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
232 |
+
logger.warning(
|
233 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
234 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
235 |
+
)
|
236 |
+
|
237 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
238 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
239 |
+
else:
|
240 |
+
attention_mask = None
|
241 |
+
|
242 |
+
text_embeddings = self.text_encoder(
|
243 |
+
text_input_ids.to(device),
|
244 |
+
attention_mask=attention_mask,
|
245 |
+
)
|
246 |
+
text_embeddings = text_embeddings[0]
|
247 |
+
|
248 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
249 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
250 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
251 |
+
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
252 |
+
|
253 |
+
# get unconditional embeddings for classifier free guidance
|
254 |
+
if do_classifier_free_guidance:
|
255 |
+
uncond_tokens: List[str]
|
256 |
+
if negative_prompt is None:
|
257 |
+
uncond_tokens = [""] * batch_size
|
258 |
+
elif type(prompt) is not type(negative_prompt):
|
259 |
+
raise TypeError(
|
260 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
261 |
+
f" {type(prompt)}."
|
262 |
+
)
|
263 |
+
elif isinstance(negative_prompt, str):
|
264 |
+
uncond_tokens = [negative_prompt]
|
265 |
+
elif batch_size != len(negative_prompt):
|
266 |
+
raise ValueError(
|
267 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
268 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
269 |
+
" the batch size of `prompt`."
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
uncond_tokens = negative_prompt
|
273 |
+
|
274 |
+
max_length = text_input_ids.shape[-1]
|
275 |
+
uncond_input = self.tokenizer(
|
276 |
+
uncond_tokens,
|
277 |
+
padding="max_length",
|
278 |
+
max_length=max_length,
|
279 |
+
truncation=True,
|
280 |
+
return_tensors="pt",
|
281 |
+
)
|
282 |
+
|
283 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
284 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
285 |
+
else:
|
286 |
+
attention_mask = None
|
287 |
+
|
288 |
+
uncond_embeddings = self.text_encoder(
|
289 |
+
uncond_input.input_ids.to(device),
|
290 |
+
attention_mask=attention_mask,
|
291 |
+
)
|
292 |
+
uncond_embeddings = uncond_embeddings[0]
|
293 |
+
|
294 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
295 |
+
seq_len = uncond_embeddings.shape[1]
|
296 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
297 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
298 |
+
|
299 |
+
# For classifier free guidance, we need to do two forward passes.
|
300 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
301 |
+
# to avoid doing two forward passes
|
302 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
303 |
+
|
304 |
+
return text_embeddings
|
305 |
+
|
306 |
+
def decode_latents(self, latents):
|
307 |
+
video_length = latents.shape[2]
|
308 |
+
latents = 1 / 0.18215 * latents
|
309 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
310 |
+
video = self.vae.decode(latents).sample
|
311 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
312 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
313 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
314 |
+
video = video.cpu().float().numpy()
|
315 |
+
return video
|
316 |
+
|
317 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
318 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
319 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
320 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
321 |
+
# and should be between [0, 1]
|
322 |
+
|
323 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
324 |
+
extra_step_kwargs = {}
|
325 |
+
if accepts_eta:
|
326 |
+
extra_step_kwargs["eta"] = eta
|
327 |
+
|
328 |
+
# check if the scheduler accepts generator
|
329 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
330 |
+
if accepts_generator:
|
331 |
+
extra_step_kwargs["generator"] = generator
|
332 |
+
return extra_step_kwargs
|
333 |
+
|
334 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
335 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
336 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
337 |
+
|
338 |
+
if height % 8 != 0 or width % 8 != 0:
|
339 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
340 |
+
|
341 |
+
if (callback_steps is None) or (
|
342 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
343 |
+
):
|
344 |
+
raise ValueError(
|
345 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
346 |
+
f" {type(callback_steps)}."
|
347 |
+
)
|
348 |
+
|
349 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
350 |
+
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
351 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
352 |
+
raise ValueError(
|
353 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
354 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
355 |
+
)
|
356 |
+
|
357 |
+
if latents is None:
|
358 |
+
rand_device = "cpu" if device.type == "mps" else device
|
359 |
+
|
360 |
+
if isinstance(generator, list):
|
361 |
+
shape = (1,) + shape[1:]
|
362 |
+
latents = [
|
363 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
364 |
+
for i in range(batch_size)
|
365 |
+
]
|
366 |
+
latents = torch.cat(latents, dim=0).to(device)
|
367 |
+
else:
|
368 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
369 |
+
else:
|
370 |
+
if latents.shape != shape:
|
371 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
372 |
+
latents = latents.to(device)
|
373 |
+
|
374 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
375 |
+
latents = latents * self.scheduler.init_noise_sigma
|
376 |
+
return latents
|
377 |
+
|
378 |
+
@torch.no_grad()
|
379 |
+
def __call__(
|
380 |
+
self,
|
381 |
+
prompt: Union[str, List[str]],
|
382 |
+
image: Union[str, List[str]],
|
383 |
+
video_length: Optional[int],
|
384 |
+
height: Optional[int] = None,
|
385 |
+
width: Optional[int] = None,
|
386 |
+
num_inference_steps: int = 50,
|
387 |
+
guidance_scale: float = 7.5,
|
388 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
389 |
+
num_videos_per_prompt: Optional[int] = 1,
|
390 |
+
eta: float = 0.0,
|
391 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
392 |
+
latents: Optional[torch.FloatTensor] = None,
|
393 |
+
output_type: Optional[str] = "tensor",
|
394 |
+
return_dict: bool = True,
|
395 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
396 |
+
callback_steps: Optional[int] = 1,
|
397 |
+
camera_matrixs = None,
|
398 |
+
class_labels = None,
|
399 |
+
prompt_ids = None,
|
400 |
+
unet_condition_type = None,
|
401 |
+
pose_guider = None,
|
402 |
+
pose_image = None,
|
403 |
+
img_proj=None,
|
404 |
+
use_noise=True,
|
405 |
+
use_shifted_noise=False,
|
406 |
+
rescale = 0.7,
|
407 |
+
**kwargs,
|
408 |
+
):
|
409 |
+
# Default height and width to unet
|
410 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
411 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
412 |
+
|
413 |
+
# Check inputs. Raise error if not correct
|
414 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
415 |
+
if isinstance(image, list):
|
416 |
+
batch_size = len(image)
|
417 |
+
else:
|
418 |
+
batch_size = image.shape[0]
|
419 |
+
# assert batch_size >= video_length and batch_size % video_length == 0
|
420 |
+
# Define call parameters
|
421 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
422 |
+
device = self._execution_device
|
423 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
424 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
425 |
+
# corresponds to doing no classifier free guidance.
|
426 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
427 |
+
|
428 |
+
# 3. Encode input image
|
429 |
+
# if isinstance(image, list):
|
430 |
+
# image_pil = image
|
431 |
+
# elif isinstance(image, torch.Tensor):
|
432 |
+
# image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
|
433 |
+
# encode input reference image
|
434 |
+
image_embeddings, image_latents = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance, img_proj=img_proj) #torch.Size([64, 1, 768]) torch.Size([64, 4, 32, 32])
|
435 |
+
image_latents = rearrange(image_latents, "(b f) c h w -> b c f h w", f=1) #torch.Size([64, 4, 1, 32, 32])
|
436 |
+
|
437 |
+
# Encode input prompt_id
|
438 |
+
# encoder_hidden_states = self.text_encoder(prompt_ids)[0] #torch.Size([32, 77, 768])
|
439 |
+
|
440 |
+
# Encode input prompt
|
441 |
+
text_embeddings = self._encode_prompt( #torch.Size([64, 77, 768])
|
442 |
+
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
443 |
+
)
|
444 |
+
|
445 |
+
# Prepare timesteps
|
446 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
447 |
+
timesteps = self.scheduler.timesteps
|
448 |
+
|
449 |
+
# Prepare latent variables
|
450 |
+
num_channels_latents = self.unet.in_channels
|
451 |
+
latents = self.prepare_latents( #torch.Size([32, 4, 4, 32, 32])
|
452 |
+
batch_size * num_videos_per_prompt,
|
453 |
+
num_channels_latents,
|
454 |
+
video_length,
|
455 |
+
height,
|
456 |
+
width,
|
457 |
+
text_embeddings.dtype,
|
458 |
+
device,
|
459 |
+
generator,
|
460 |
+
latents,
|
461 |
+
)
|
462 |
+
latents_dtype = latents.dtype
|
463 |
+
# import ipdb
|
464 |
+
# ipdb.set_trace()
|
465 |
+
# Prepare extra step kwargs.
|
466 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
467 |
+
# prepare camera_matrix
|
468 |
+
if camera_matrixs is not None:
|
469 |
+
camera_matrixs = torch.cat([camera_matrixs] * 2) if do_classifier_free_guidance else camera_matrixs #(64, 4, 12)
|
470 |
+
# Denoising loop
|
471 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
472 |
+
if pose_guider is not None:
|
473 |
+
if len(pose_image.shape) == 5:
|
474 |
+
pose_embeds = pose_guider(rearrange(pose_image, "b f c h w -> (b f) c h w"))
|
475 |
+
pose_embeds = rearrange(pose_embeds, "(b f) c h w-> b c f h w ", f=video_length)
|
476 |
+
else:
|
477 |
+
pose_embeds = pose_guider(pose_image).unsqueeze(0)
|
478 |
+
pose_embeds = torch.cat([pose_embeds]*2, dim=0)
|
479 |
+
# import ipdb
|
480 |
+
# ipdb.set_trace()
|
481 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
482 |
+
for i, t in enumerate(tqdm.tqdm(timesteps)):
|
483 |
+
# expand the latents if we are doing classifier free guidance
|
484 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
485 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
486 |
+
if pose_guider is not None:
|
487 |
+
latent_model_input = latent_model_input + pose_embeds
|
488 |
+
|
489 |
+
noise_cond = torch.randn_like(image_latents)
|
490 |
+
if use_noise:
|
491 |
+
cond_latents = self.scheduler.add_noise(image_latents, noise_cond, t)
|
492 |
+
else:
|
493 |
+
cond_latents = image_latents
|
494 |
+
cond_latent_model_input = torch.cat([cond_latents] * 2) if do_classifier_free_guidance else cond_latents
|
495 |
+
cond_latent_model_input = self.scheduler.scale_model_input(cond_latent_model_input, t)
|
496 |
+
|
497 |
+
# predict the noise residual
|
498 |
+
# ref text condition
|
499 |
+
ref_dict = {}
|
500 |
+
if self.ref_unet is not None:
|
501 |
+
noise_pred_cond = self.ref_unet(
|
502 |
+
cond_latent_model_input, #torch.Size([64, 4, 1, 32, 32])
|
503 |
+
t, #torch.Size([32])
|
504 |
+
encoder_hidden_states=text_embeddings.to(torch.float32), #torch.Size([64, 77, 768])
|
505 |
+
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict)
|
506 |
+
).sample.to(dtype=latents_dtype)
|
507 |
+
|
508 |
+
# if torch.isnan(noise_pred_cond).any():
|
509 |
+
# ipdb.set_trace()
|
510 |
+
# Predict the noise residual and compute loss
|
511 |
+
# model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, camera_matrixs).sample
|
512 |
+
# unet
|
513 |
+
#text condition for unet
|
514 |
+
text_embeddings_unet = text_embeddings.unsqueeze(1).repeat(1,latents.shape[2],1,1)
|
515 |
+
text_embeddings_unet = rearrange(text_embeddings_unet, 'B Nv d c -> (B Nv) d c')
|
516 |
+
#image condition for unet
|
517 |
+
image_embeddings_unet = image_embeddings.unsqueeze(1).repeat(1,latents.shape[2],1, 1)
|
518 |
+
image_embeddings_unet = rearrange(image_embeddings_unet, 'B Nv d c -> (B Nv) d c')
|
519 |
+
|
520 |
+
if unet_condition_type == 'text':
|
521 |
+
encoder_hidden_states_unet_cond = text_embeddings_unet
|
522 |
+
elif unet_condition_type == 'image':
|
523 |
+
encoder_hidden_states_unet_cond = image_embeddings_unet
|
524 |
+
else:
|
525 |
+
raise('need unet_condition_type')
|
526 |
+
|
527 |
+
if self.ref_unet is not None:
|
528 |
+
noise_pred = self.unet(
|
529 |
+
latent_model_input.to(torch.float32), #torch.Size([64, 4, 4, 32, 32])
|
530 |
+
t,
|
531 |
+
encoder_hidden_states=encoder_hidden_states_unet_cond.to(torch.float32),
|
532 |
+
camera_matrixs=camera_matrixs.to(torch.float32), #torch.Size([64, 4, 12])
|
533 |
+
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance)
|
534 |
+
# cross_attention_kwargs=dict(mode="n", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance)
|
535 |
+
).sample.to(dtype=latents_dtype)
|
536 |
+
else:
|
537 |
+
noise_pred = self.unet(
|
538 |
+
latent_model_input.to(torch.float32), #torch.Size([64, 4, 4, 32, 32])
|
539 |
+
t,
|
540 |
+
encoder_hidden_states=encoder_hidden_states_unet_cond.to(torch.float32),
|
541 |
+
camera_matrixs=camera_matrixs.to(torch.float32), #torch.Size([64, 4, 12])
|
542 |
+
# cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance)
|
543 |
+
cross_attention_kwargs=dict(mode="n", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance)
|
544 |
+
).sample.to(dtype=latents_dtype)
|
545 |
+
# perform guidance
|
546 |
+
if do_classifier_free_guidance:
|
547 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
548 |
+
if use_shifted_noise:
|
549 |
+
# Apply regular classifier-free guidance.
|
550 |
+
cfg = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
551 |
+
# Calculate standard deviations.
|
552 |
+
std_pos = noise_pred_text.std([1,2,3], keepdim=True)
|
553 |
+
std_cfg = cfg.std([1,2,3], keepdim=True)
|
554 |
+
# Apply guidance rescale with fused operations.
|
555 |
+
factor = std_pos / std_cfg
|
556 |
+
factor = rescale * factor + (1 - rescale)
|
557 |
+
noise_pred = cfg * factor
|
558 |
+
else:
|
559 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
560 |
+
# noise_pred_uncond_, noise_pred_text_ = noise_pred_cond.chunk(2)
|
561 |
+
# noise_pred_cond = noise_pred_uncond_ + guidance_scale * (noise_pred_text_ - noise_pred_uncond_)
|
562 |
+
|
563 |
+
# compute the previous noisy sample x_t -> x_t-1
|
564 |
+
noise_pred = rearrange(noise_pred, "(b f) c h w -> b c f h w", f=video_length)
|
565 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
566 |
+
# noise_pred_cond = rearrange(noise_pred_cond, "(b f) c h w -> b c f h w", f=1)
|
567 |
+
# cond_latents = self.scheduler.step(noise_pred_cond, t, cond_latents, **extra_step_kwargs).prev_sample
|
568 |
+
|
569 |
+
# call the callback, if provided
|
570 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
571 |
+
progress_bar.update()
|
572 |
+
if callback is not None and i % callback_steps == 0:
|
573 |
+
callback(i, t, latents)
|
574 |
+
|
575 |
+
# Post-processing
|
576 |
+
video = self.decode_latents(latents)
|
577 |
+
|
578 |
+
# Convert to tensor
|
579 |
+
if output_type == "tensor":
|
580 |
+
video = torch.from_numpy(video)
|
581 |
+
|
582 |
+
if not return_dict:
|
583 |
+
return video
|
584 |
+
|
585 |
+
return TuneAVideoPipelineOutput(videos=video)
|
2D_Stage/tuneavideo/util.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
from typing import Union
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
|
9 |
+
from tqdm import tqdm
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
def shifted_noise(betas, image_d=512, noise_d=256, shifted_noise=True):
|
13 |
+
alphas = 1 - betas
|
14 |
+
alphas_bar = torch.cumprod(alphas, dim=0)
|
15 |
+
d = (image_d / noise_d) ** 2
|
16 |
+
if shifted_noise:
|
17 |
+
alphas_bar = alphas_bar / (d - (d - 1) * alphas_bar)
|
18 |
+
alphas_bar_sqrt = torch.sqrt(alphas_bar)
|
19 |
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
20 |
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
21 |
+
# Shift so last timestep is zero.
|
22 |
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
23 |
+
# Scale so first timestep is back to old value.
|
24 |
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (
|
25 |
+
alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
26 |
+
|
27 |
+
# Convert alphas_bar_sqrt to betas
|
28 |
+
alphas_bar = alphas_bar_sqrt ** 2
|
29 |
+
alphas = alphas_bar[1:] / alphas_bar[:-1]
|
30 |
+
alphas = torch.cat([alphas_bar[0:1], alphas])
|
31 |
+
betas = 1 - alphas
|
32 |
+
return betas
|
33 |
+
|
34 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
|
35 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
36 |
+
outputs = []
|
37 |
+
for x in videos:
|
38 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
39 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
40 |
+
if rescale:
|
41 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
42 |
+
x = (x * 255).numpy().astype(np.uint8)
|
43 |
+
outputs.append(x)
|
44 |
+
|
45 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
46 |
+
imageio.mimsave(path, outputs, duration=1000/fps)
|
47 |
+
|
48 |
+
def save_imgs_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
|
49 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
50 |
+
for i, x in enumerate(videos):
|
51 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
52 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
53 |
+
if rescale:
|
54 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
55 |
+
x = (x * 255).numpy().astype(np.uint8)
|
56 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
57 |
+
cv2.imwrite(os.path.join(path, f'view_{i}.png'), x[:,:,::-1])
|
58 |
+
|
59 |
+
def imgs_grid(videos: torch.Tensor, rescale=False, n_rows=4, fps=8):
|
60 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
61 |
+
image_list = []
|
62 |
+
for i, x in enumerate(videos):
|
63 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
64 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
65 |
+
if rescale:
|
66 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
67 |
+
x = (x * 255).numpy().astype(np.uint8)
|
68 |
+
# image_list.append(x[:,:,::-1])
|
69 |
+
image_list.append(x)
|
70 |
+
return image_list
|
71 |
+
|
72 |
+
# DDIM Inversion
|
73 |
+
@torch.no_grad()
|
74 |
+
def init_prompt(prompt, pipeline):
|
75 |
+
uncond_input = pipeline.tokenizer(
|
76 |
+
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
|
77 |
+
return_tensors="pt"
|
78 |
+
)
|
79 |
+
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
|
80 |
+
text_input = pipeline.tokenizer(
|
81 |
+
[prompt],
|
82 |
+
padding="max_length",
|
83 |
+
max_length=pipeline.tokenizer.model_max_length,
|
84 |
+
truncation=True,
|
85 |
+
return_tensors="pt",
|
86 |
+
)
|
87 |
+
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
|
88 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
89 |
+
|
90 |
+
return context
|
91 |
+
|
92 |
+
|
93 |
+
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
|
94 |
+
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
|
95 |
+
timestep, next_timestep = min(
|
96 |
+
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
|
97 |
+
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
98 |
+
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
|
99 |
+
beta_prod_t = 1 - alpha_prod_t
|
100 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
101 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
102 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
103 |
+
return next_sample
|
104 |
+
|
105 |
+
|
106 |
+
def get_noise_pred_single(latents, t, context, unet):
|
107 |
+
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
|
108 |
+
return noise_pred
|
109 |
+
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
|
113 |
+
context = init_prompt(prompt, pipeline)
|
114 |
+
uncond_embeddings, cond_embeddings = context.chunk(2)
|
115 |
+
all_latent = [latent]
|
116 |
+
latent = latent.clone().detach()
|
117 |
+
for i in tqdm(range(num_inv_steps)):
|
118 |
+
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
|
119 |
+
noise_pred = get_noise_pred_single(latent.to(torch.float32), t, cond_embeddings.to(torch.float32), pipeline.unet)
|
120 |
+
latent = next_step(noise_pred, t, latent, ddim_scheduler)
|
121 |
+
all_latent.append(latent)
|
122 |
+
return all_latent
|
123 |
+
|
124 |
+
|
125 |
+
@torch.no_grad()
|
126 |
+
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
|
127 |
+
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
|
128 |
+
return ddim_latents
|
2D_Stage/webui.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import glob
|
4 |
+
|
5 |
+
import io
|
6 |
+
import argparse
|
7 |
+
import inspect
|
8 |
+
import os
|
9 |
+
import random
|
10 |
+
from typing import Dict, Optional, Tuple
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.checkpoint
|
16 |
+
|
17 |
+
from accelerate.logging import get_logger
|
18 |
+
from accelerate.utils import set_seed
|
19 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
20 |
+
from diffusers.utils import check_min_version
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
|
23 |
+
from torchvision import transforms
|
24 |
+
|
25 |
+
from tuneavideo.models.unet_mv2d_condition import UNetMV2DConditionModel
|
26 |
+
from tuneavideo.models.unet_mv2d_ref import UNetMV2DRefModel
|
27 |
+
from tuneavideo.models.PoseGuider import PoseGuider
|
28 |
+
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
29 |
+
from tuneavideo.util import shifted_noise
|
30 |
+
from einops import rearrange
|
31 |
+
import PIL
|
32 |
+
from PIL import Image
|
33 |
+
from torchvision.utils import save_image
|
34 |
+
import json
|
35 |
+
import cv2
|
36 |
+
|
37 |
+
import onnxruntime as rt
|
38 |
+
from huggingface_hub.file_download import hf_hub_download
|
39 |
+
from rm_anime_bg.cli import get_mask, SCALE
|
40 |
+
|
41 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
42 |
+
|
43 |
+
repo_id = "zjpshadow/CharacterGen"
|
44 |
+
all_files = list_repo_files(repo_id, revision="main")
|
45 |
+
|
46 |
+
for file in all_files:
|
47 |
+
if os.path.exists("../" + file):
|
48 |
+
continue
|
49 |
+
if file.startswith("2D_Stage"):
|
50 |
+
hf_hub_download(repo_id, file, local_dir="../")
|
51 |
+
|
52 |
+
class rm_bg_api:
|
53 |
+
|
54 |
+
def __init__(self, force_cpu: Optional[bool] = True):
|
55 |
+
session_infer_path = hf_hub_download(
|
56 |
+
repo_id="skytnt/anime-seg", filename="isnetis.onnx",
|
57 |
+
)
|
58 |
+
providers: list[str] = ["CPUExecutionProvider"]
|
59 |
+
if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers():
|
60 |
+
providers = ["CUDAExecutionProvider"]
|
61 |
+
|
62 |
+
self.session_infer = rt.InferenceSession(
|
63 |
+
session_infer_path, providers=providers,
|
64 |
+
)
|
65 |
+
|
66 |
+
def remove_background(
|
67 |
+
self,
|
68 |
+
imgs: list[np.ndarray],
|
69 |
+
alpha_min: float,
|
70 |
+
alpha_max: float,
|
71 |
+
) -> list:
|
72 |
+
process_imgs = []
|
73 |
+
for img in imgs:
|
74 |
+
# CHANGE to RGB
|
75 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
|
76 |
+
mask = get_mask(self.session_infer, img)
|
77 |
+
|
78 |
+
mask[mask < alpha_min] = 0.0 # type: ignore
|
79 |
+
mask[mask > alpha_max] = 1.0 # type: ignore
|
80 |
+
|
81 |
+
img_after = (mask * img + SCALE * (1 - mask)).astype(np.uint8) # type: ignore
|
82 |
+
mask = (mask * SCALE).astype(np.uint8) # type: ignore
|
83 |
+
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
|
84 |
+
mask = mask.repeat(3, axis=2)
|
85 |
+
process_imgs.append(Image.fromarray(img_after))
|
86 |
+
return process_imgs
|
87 |
+
|
88 |
+
check_min_version("0.24.0")
|
89 |
+
|
90 |
+
logger = get_logger(__name__, log_level="INFO")
|
91 |
+
|
92 |
+
def set_seed(seed):
|
93 |
+
random.seed(seed)
|
94 |
+
np.random.seed(seed)
|
95 |
+
torch.manual_seed(seed)
|
96 |
+
torch.cuda.manual_seed_all(seed)
|
97 |
+
|
98 |
+
def get_bg_color(bg_color):
|
99 |
+
if bg_color == 'white':
|
100 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
101 |
+
elif bg_color == 'black':
|
102 |
+
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
103 |
+
elif bg_color == 'gray':
|
104 |
+
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
105 |
+
elif bg_color == 'random':
|
106 |
+
bg_color = np.random.rand(3)
|
107 |
+
elif isinstance(bg_color, float):
|
108 |
+
bg_color = np.array([bg_color] * 3, dtype=np.float32)
|
109 |
+
else:
|
110 |
+
raise NotImplementedError
|
111 |
+
return bg_color
|
112 |
+
|
113 |
+
def process_image(image, totensor):
|
114 |
+
if not image.mode == "RGBA":
|
115 |
+
image = image.convert("RGBA")
|
116 |
+
|
117 |
+
# Find non-transparent pixels
|
118 |
+
non_transparent = np.nonzero(np.array(image)[..., 3])
|
119 |
+
min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
|
120 |
+
min_y, max_y = non_transparent[0].min(), non_transparent[0].max()
|
121 |
+
image = image.crop((min_x, min_y, max_x, max_y))
|
122 |
+
|
123 |
+
# paste to center
|
124 |
+
max_dim = max(image.width, image.height)
|
125 |
+
max_height = max_dim
|
126 |
+
max_width = int(max_dim / 3 * 2)
|
127 |
+
new_image = Image.new("RGBA", (max_width, max_height))
|
128 |
+
left = (max_width - image.width) // 2
|
129 |
+
top = (max_height - image.height) // 2
|
130 |
+
new_image.paste(image, (left, top))
|
131 |
+
|
132 |
+
image = new_image.resize((512, 768), resample=PIL.Image.BICUBIC)
|
133 |
+
image = np.array(image)
|
134 |
+
image = image.astype(np.float32) / 255.
|
135 |
+
assert image.shape[-1] == 4 # RGBA
|
136 |
+
alpha = image[..., 3:4]
|
137 |
+
bg_color = get_bg_color("gray")
|
138 |
+
image = image[..., :3] * alpha + bg_color * (1 - alpha)
|
139 |
+
# save image
|
140 |
+
# new_image = Image.fromarray((image * 255).astype(np.uint8))
|
141 |
+
# new_image.save("input.png")
|
142 |
+
return totensor(image)
|
143 |
+
|
144 |
+
class Inference_API:
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
self.validation_pipeline = None
|
148 |
+
|
149 |
+
@torch.no_grad()
|
150 |
+
def inference(self, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder, pretrained_model_path, generator, validation, val_width, val_height, unet_condition_type,
|
151 |
+
pose_guider=None, use_noise=True, use_shifted_noise=False, noise_d=256, crop=False, seed=100, timestep=20):
|
152 |
+
set_seed(seed)
|
153 |
+
# Get the validation pipeline
|
154 |
+
if self.validation_pipeline is None:
|
155 |
+
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
156 |
+
if use_shifted_noise:
|
157 |
+
print(f"enable shifted noise for {val_height} to {noise_d}")
|
158 |
+
betas = shifted_noise(noise_scheduler.betas, image_d=val_height, noise_d=noise_d)
|
159 |
+
noise_scheduler.betas = betas
|
160 |
+
noise_scheduler.alphas = 1 - betas
|
161 |
+
noise_scheduler.alphas_cumprod = torch.cumprod(noise_scheduler.alphas, dim=0)
|
162 |
+
self.validation_pipeline = TuneAVideoPipeline(
|
163 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, ref_unet=ref_unet,feature_extractor=feature_extractor,image_encoder=image_encoder,
|
164 |
+
scheduler=noise_scheduler
|
165 |
+
)
|
166 |
+
self.validation_pipeline.enable_vae_slicing()
|
167 |
+
self.validation_pipeline.set_progress_bar_config(disable=True)
|
168 |
+
|
169 |
+
totensor = transforms.ToTensor()
|
170 |
+
|
171 |
+
metas = json.load(open("./material/pose.json", "r"))
|
172 |
+
cameras = []
|
173 |
+
pose_images = []
|
174 |
+
input_path = "./material"
|
175 |
+
for lm in metas:
|
176 |
+
cameras.append(torch.tensor(np.array(lm[0]).reshape(4, 4).transpose(1,0)[:3, :4]).reshape(-1))
|
177 |
+
if not crop:
|
178 |
+
pose_images.append(totensor(np.asarray(Image.open(os.path.join(input_path, lm[1])).resize(
|
179 |
+
(val_height, val_width), resample=PIL.Image.BICUBIC)).astype(np.float32) / 255.))
|
180 |
+
else:
|
181 |
+
pose_image = Image.open(os.path.join(input_path, lm[1]))
|
182 |
+
crop_area = (128, 0, 640, 768)
|
183 |
+
pose_images.append(totensor(np.array(pose_image.crop(crop_area)).astype(np.float32)) / 255.)
|
184 |
+
camera_matrixs = torch.stack(cameras).unsqueeze(0).to("cuda")
|
185 |
+
pose_imgs_in = torch.stack(pose_images).to("cuda")
|
186 |
+
prompts = "high quality, best quality"
|
187 |
+
prompt_ids = tokenizer(
|
188 |
+
prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
|
189 |
+
return_tensors="pt"
|
190 |
+
).input_ids[0]
|
191 |
+
|
192 |
+
# (B*Nv, 3, H, W)
|
193 |
+
B = 1
|
194 |
+
weight_dtype = torch.bfloat16
|
195 |
+
imgs_in = process_image(input_image, totensor)
|
196 |
+
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
|
197 |
+
|
198 |
+
with torch.autocast("cuda", dtype=weight_dtype):
|
199 |
+
imgs_in = imgs_in.to("cuda")
|
200 |
+
# B*Nv images
|
201 |
+
out = self.validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator,
|
202 |
+
num_inference_steps=timestep,
|
203 |
+
camera_matrixs=camera_matrixs.to(weight_dtype), prompt_ids=prompt_ids,
|
204 |
+
height=val_height, width=val_width, unet_condition_type=unet_condition_type,
|
205 |
+
pose_guider=None, pose_image=pose_imgs_in, use_noise=use_noise,
|
206 |
+
use_shifted_noise=use_shifted_noise, **validation).videos
|
207 |
+
out = rearrange(out, "B C f H W -> (B f) C H W", f=validation.video_length)
|
208 |
+
|
209 |
+
image_outputs = []
|
210 |
+
for bs in range(4):
|
211 |
+
img_buf = io.BytesIO()
|
212 |
+
save_image(out[bs], img_buf, format='PNG')
|
213 |
+
img_buf.seek(0)
|
214 |
+
img = Image.open(img_buf)
|
215 |
+
image_outputs.append(img)
|
216 |
+
torch.cuda.empty_cache()
|
217 |
+
return image_outputs
|
218 |
+
|
219 |
+
@torch.no_grad()
|
220 |
+
def main(
|
221 |
+
pretrained_model_path: str,
|
222 |
+
image_encoder_path: str,
|
223 |
+
ckpt_dir: str,
|
224 |
+
validation: Dict,
|
225 |
+
local_crossattn: bool = True,
|
226 |
+
unet_from_pretrained_kwargs=None,
|
227 |
+
unet_condition_type=None,
|
228 |
+
use_pose_guider=False,
|
229 |
+
use_noise=True,
|
230 |
+
use_shifted_noise=False,
|
231 |
+
noise_d=256
|
232 |
+
):
|
233 |
+
*_, config = inspect.getargvalues(inspect.currentframe())
|
234 |
+
|
235 |
+
device = "cuda"
|
236 |
+
|
237 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
238 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
239 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(image_encoder_path)
|
240 |
+
feature_extractor = CLIPImageProcessor()
|
241 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
242 |
+
unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
|
243 |
+
ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
|
244 |
+
if use_pose_guider:
|
245 |
+
pose_guider = PoseGuider(noise_latent_channels=4).to("cuda")
|
246 |
+
else:
|
247 |
+
pose_guider = None
|
248 |
+
|
249 |
+
unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model.bin"), map_location="cpu")
|
250 |
+
if use_pose_guider:
|
251 |
+
pose_guider_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu")
|
252 |
+
ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_2.bin"), map_location="cpu")
|
253 |
+
pose_guider.load_state_dict(pose_guider_params)
|
254 |
+
else:
|
255 |
+
ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu")
|
256 |
+
unet.load_state_dict(unet_params)
|
257 |
+
ref_unet.load_state_dict(ref_unet_params)
|
258 |
+
|
259 |
+
weight_dtype = torch.float16
|
260 |
+
|
261 |
+
text_encoder.to(device, dtype=weight_dtype)
|
262 |
+
image_encoder.to(device, dtype=weight_dtype)
|
263 |
+
vae.to(device, dtype=weight_dtype)
|
264 |
+
ref_unet.to(device, dtype=weight_dtype)
|
265 |
+
unet.to(device, dtype=weight_dtype)
|
266 |
+
|
267 |
+
vae.requires_grad_(False)
|
268 |
+
unet.requires_grad_(False)
|
269 |
+
ref_unet.requires_grad_(False)
|
270 |
+
|
271 |
+
generator = torch.Generator(device="cuda")
|
272 |
+
inferapi = Inference_API()
|
273 |
+
remove_api = rm_bg_api()
|
274 |
+
def gen4views(image, width, height, seed, timestep, remove_bg):
|
275 |
+
if remove_bg:
|
276 |
+
image = remove_api.remove_background(
|
277 |
+
imgs=[np.array(image)],
|
278 |
+
alpha_min=0.1,
|
279 |
+
alpha_max=0.9,
|
280 |
+
)[0]
|
281 |
+
return inferapi.inference(
|
282 |
+
image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder, pretrained_model_path,
|
283 |
+
generator, validation, width, height, unet_condition_type,
|
284 |
+
pose_guider=pose_guider, use_noise=use_noise, use_shifted_noise=use_shifted_noise, noise_d=noise_d,
|
285 |
+
crop=True, seed=seed, timestep=timestep
|
286 |
+
)
|
287 |
+
|
288 |
+
with gr.Blocks() as demo:
|
289 |
+
gr.Markdown("# [SIGGRAPH'24] CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Calibration")
|
290 |
+
gr.Markdown("# 2D Stage: One Image to Four Views of Character Image")
|
291 |
+
gr.Markdown("**Please Upload the Image without background, and the pictures uploaded should preferably be full-body frontal photos.**")
|
292 |
+
with gr.Row():
|
293 |
+
with gr.Column():
|
294 |
+
img_input = gr.Image(type="pil", label="Upload Image(without background)", image_mode="RGBA", width=768, height=512)
|
295 |
+
gr.Examples(
|
296 |
+
label="Example Images",
|
297 |
+
examples=glob.glob("./material/examples/*.png"),
|
298 |
+
inputs=[img_input]
|
299 |
+
)
|
300 |
+
with gr.Row():
|
301 |
+
width_input = gr.Number(label="Width", value=512)
|
302 |
+
height_input = gr.Number(label="Height", value=768)
|
303 |
+
seed_input = gr.Number(label="Seed", value=2333)
|
304 |
+
remove_bg = gr.Checkbox(label="Remove Background (with algorithm)", value=False)
|
305 |
+
timestep = gr.Slider(minimum=10, maximum=70, step=1, value=40, label="Timesteps")
|
306 |
+
with gr.Column():
|
307 |
+
button = gr.Button(value="Generate")
|
308 |
+
output = gr.Gallery(label="4 views of Character Image")
|
309 |
+
|
310 |
+
button.click(
|
311 |
+
fn=gen4views,
|
312 |
+
inputs=[img_input, width_input, height_input, seed_input, timestep, remove_bg],
|
313 |
+
outputs=[output]
|
314 |
+
)
|
315 |
+
|
316 |
+
demo.launch()
|
317 |
+
|
318 |
+
if __name__ == "__main__":
|
319 |
+
parser = argparse.ArgumentParser()
|
320 |
+
parser.add_argument("--config", type=str, default="./configs/infer.yaml")
|
321 |
+
args = parser.parse_args()
|
322 |
+
|
323 |
+
main(**OmegaConf.load(args.config))
|
3D_Stage/__pycache__/refine.cpython-310.pyc
ADDED
Binary file (6.18 kB). View file
|
|
3D_Stage/configs/infer.yaml
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
system_cls: lrm.systems.multiview_lrm.MultiviewLRM
|
2 |
+
data:
|
3 |
+
cond_width: 504
|
4 |
+
cond_height: 504
|
5 |
+
|
6 |
+
system:
|
7 |
+
weights: ./models/lrm.ckpt
|
8 |
+
|
9 |
+
weights_ignore_modules:
|
10 |
+
- decoder.heads.density
|
11 |
+
|
12 |
+
check_train_every_n_steps: 100
|
13 |
+
|
14 |
+
camera_embedder_cls: lrm.models.camera.LinearCameraEmbedder
|
15 |
+
camera_embedder:
|
16 |
+
in_channels: 16
|
17 |
+
out_channels: 768
|
18 |
+
conditions:
|
19 |
+
- c2w_cond
|
20 |
+
|
21 |
+
# image tokenizer transforms input images to tokens
|
22 |
+
image_tokenizer_cls: lrm.models.tokenizers.image.DINOV2SingleImageTokenizer
|
23 |
+
image_tokenizer:
|
24 |
+
pretrained_model_name_or_path: "./models/base"
|
25 |
+
freeze_backbone_params: false
|
26 |
+
enable_memory_efficient_attention: true
|
27 |
+
enable_gradient_checkpointing: true
|
28 |
+
# camera modulation to the DINO transformer layers
|
29 |
+
modulation: true
|
30 |
+
modulation_zero_init: true
|
31 |
+
modulation_single_layer: true
|
32 |
+
modulation_cond_dim: ${system.camera_embedder.out_channels}
|
33 |
+
|
34 |
+
# tokenizer gives a tokenized representation for the 3D scene
|
35 |
+
# triplane tokens in this case
|
36 |
+
tokenizer_cls: lrm.models.tokenizers.triplane.TriplaneLearnablePositionalEmbedding
|
37 |
+
tokenizer:
|
38 |
+
plane_size: 32
|
39 |
+
num_channels: 512
|
40 |
+
|
41 |
+
# backbone network is a transformer that takes scene tokens (potentially with conditional image tokens)
|
42 |
+
# and outputs scene tokens of the same size
|
43 |
+
backbone_cls: lrm.models.transformers.transformer_1d.Transformer1D
|
44 |
+
backbone:
|
45 |
+
in_channels: ${system.tokenizer.num_channels}
|
46 |
+
num_attention_heads: 16
|
47 |
+
attention_head_dim: 64
|
48 |
+
num_layers: 12
|
49 |
+
cross_attention_dim: 768 # hard-code, =DINO feature dim
|
50 |
+
# camera modulation to the transformer layers
|
51 |
+
# if not needed, set norm_type=layer_norm and do not specify cond_dim_ada_norm_continuous
|
52 |
+
norm_type: "layer_norm"
|
53 |
+
enable_memory_efficient_attention: true
|
54 |
+
gradient_checkpointing: true
|
55 |
+
|
56 |
+
# post processor takes scene tokens and outputs the final scene parameters that will be used for rendering
|
57 |
+
# in this case, triplanes are upsampled and the features are condensed
|
58 |
+
post_processor_cls: lrm.models.networks.TriplaneUpsampleNetwork
|
59 |
+
post_processor:
|
60 |
+
in_channels: 512
|
61 |
+
out_channels: 80
|
62 |
+
|
63 |
+
renderer_cls: lrm.models.renderers.triplane_dmtet.TriplaneDMTetRenderer
|
64 |
+
renderer:
|
65 |
+
radius: 0.6 # slightly larger than 0.5
|
66 |
+
feature_reduction: concat
|
67 |
+
sdf_bias: -2.
|
68 |
+
tet_dir: "./load/tets/"
|
69 |
+
isosurface_resolution: 256
|
70 |
+
enable_isosurface_grid_deformation: false
|
71 |
+
sdf_activation: negative
|
72 |
+
|
73 |
+
decoder_cls: lrm.models.networks.MultiHeadMLP
|
74 |
+
decoder:
|
75 |
+
in_channels: 240 # 3 * 80
|
76 |
+
n_neurons: 64
|
77 |
+
n_hidden_layers_share: 8
|
78 |
+
heads:
|
79 |
+
- name: sdf
|
80 |
+
out_channels: 1
|
81 |
+
n_hidden_layers: 1
|
82 |
+
output_activation: null
|
83 |
+
- name: features
|
84 |
+
out_channels: 3
|
85 |
+
n_hidden_layers: 1
|
86 |
+
output_activation: null # activate in material
|
87 |
+
activation: silu
|
88 |
+
chunk_mode: deferred
|
89 |
+
chunk_size: 131072
|
90 |
+
|
91 |
+
exporter:
|
92 |
+
fmt: "obj"
|
93 |
+
#visual: "vertex"
|
94 |
+
visual: "uv"
|
95 |
+
save_uv: True
|
96 |
+
save_texture: True
|
97 |
+
uv_unwrap_method: "open3d"
|
98 |
+
output_path: "./outputs"
|
99 |
+
|
100 |
+
material_cls: lrm.models.materials.no_material.NoMaterial
|
101 |
+
|
102 |
+
background_cls: lrm.models.background.solid_color_background.SolidColorBackground
|
103 |
+
background:
|
104 |
+
color: [0.5, 0.5, 0.5]
|
3D_Stage/load/tets/128_tets.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daa82da88746777043efe2182a4ff01843dbe4400cb34f53c8e2f5da8d35569d
|
3 |
+
size 7565405
|
3D_Stage/load/tets/256_tets.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5822cae907aba088af41fed74461105f8864c05d58e557c82ca40561497db4b3
|
3 |
+
size 63136604
|
3D_Stage/load/tets/32_tets.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d76349b760e99afd4ecbbfb20e421d134385a87867dca34ec21093e8fe4b2b72
|
3 |
+
size 124137
|
3D_Stage/load/tets/64_tets.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5dc0f19e87c275b54b78023c931b264bb34a8ea9804f82b991dde7fa99fbaee
|
3 |
+
size 957742
|
3D_Stage/load/tets/generate_tets.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
4 |
+
# property and proprietary rights in and to this material, related
|
5 |
+
# documentation and any modifications thereto. Any use, reproduction,
|
6 |
+
# disclosure or distribution of this material and related documentation
|
7 |
+
# without an express license agreement from NVIDIA CORPORATION or
|
8 |
+
# its affiliates is strictly prohibited.
|
9 |
+
|
10 |
+
import os
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
"""
|
15 |
+
This code segment shows how to use Quartet: https://github.com/crawforddoran/quartet,
|
16 |
+
to generate a tet grid
|
17 |
+
1) Download, compile and run Quartet as described in the link above. Example usage `quartet meshes/cube.obj 0.5 cube_5.tet`
|
18 |
+
2) Run the function below to generate a file `cube_32_tet.tet`
|
19 |
+
"""
|
20 |
+
|
21 |
+
|
22 |
+
def generate_tetrahedron_grid_file(res=32, root=".."):
|
23 |
+
frac = 1.0 / res
|
24 |
+
command = f"cd {root}; ./quartet meshes/cube.obj {frac} meshes/cube_{res}_tet.tet -s meshes/cube_boundary_{res}.obj"
|
25 |
+
os.system(command)
|
26 |
+
|
27 |
+
|
28 |
+
"""
|
29 |
+
This code segment shows how to convert from a quartet .tet file to compressed npz file
|
30 |
+
"""
|
31 |
+
|
32 |
+
|
33 |
+
def convert_from_quartet_to_npz(quartetfile="cube_32_tet.tet", npzfile="32_tets"):
|
34 |
+
file1 = open(quartetfile, "r")
|
35 |
+
header = file1.readline()
|
36 |
+
numvertices = int(header.split(" ")[1])
|
37 |
+
numtets = int(header.split(" ")[2])
|
38 |
+
print(numvertices, numtets)
|
39 |
+
|
40 |
+
# load vertices
|
41 |
+
vertices = np.loadtxt(quartetfile, skiprows=1, max_rows=numvertices)
|
42 |
+
print(vertices.shape)
|
43 |
+
|
44 |
+
# load indices
|
45 |
+
indices = np.loadtxt(
|
46 |
+
quartetfile, dtype=int, skiprows=1 + numvertices, max_rows=numtets
|
47 |
+
)
|
48 |
+
print(indices.shape)
|
49 |
+
|
50 |
+
np.savez_compressed(npzfile, vertices=vertices, indices=indices)
|
51 |
+
|
52 |
+
|
53 |
+
root = "/home/gyc/quartet"
|
54 |
+
for res in [300, 350, 400]:
|
55 |
+
generate_tetrahedron_grid_file(res, root)
|
56 |
+
convert_from_quartet_to_npz(
|
57 |
+
os.path.join(root, f"meshes/cube_{res}_tet.tet"), npzfile=f"{res}_tets"
|
58 |
+
)
|
3D_Stage/lrm/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
|
4 |
+
def find(cls_string):
|
5 |
+
module_string = ".".join(cls_string.split(".")[:-1])
|
6 |
+
cls_name = cls_string.split(".")[-1]
|
7 |
+
module = importlib.import_module(module_string, package=None)
|
8 |
+
cls = getattr(module, cls_name)
|
9 |
+
return cls
|
10 |
+
|
11 |
+
|
12 |
+
### grammar sugar for logging utilities ###
|
13 |
+
import logging
|
14 |
+
|
15 |
+
logger = logging.getLogger("pytorch_lightning")
|
16 |
+
|
17 |
+
from pytorch_lightning.utilities.rank_zero import (
|
18 |
+
rank_zero_debug,
|
19 |
+
rank_zero_info,
|
20 |
+
rank_zero_only,
|
21 |
+
)
|
22 |
+
|
23 |
+
debug = rank_zero_debug
|
24 |
+
info = rank_zero_info
|
25 |
+
|
26 |
+
|
27 |
+
@rank_zero_only
|
28 |
+
def warn(*args, **kwargs):
|
29 |
+
logger.warn(*args, **kwargs)
|
3D_Stage/lrm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (787 Bytes). View file
|
|
3D_Stage/lrm/models/__init__.py
ADDED
File without changes
|