Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,697 Bytes
8cd00a9 13c384f 8cd00a9 3cb415b 8cd00a9 13c384f 8cd00a9 13c384f 8cd00a9 13c384f 8cd00a9 13c384f 8cd00a9 b274daf 8cd00a9 52a6fa1 8cd00a9 52a6fa1 8cd00a9 3cb415b 8cd00a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import gradio as gr
import os
import torch
from PIL import Image
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
from utils import add_feature_on_area
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from utils import add_feature_on_area, replace_with_feature
import threading
import spaces
code_to_block = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
lock = threading.Lock()
def process_cache(cache, saes_dict):
top_features_dict = {}
sparse_maps_dict = {}
for code in code_to_block.keys():
block = code_to_block[code]
sae = saes_dict[code]
diff = cache["output"][block] - cache["input"][block]
diff = diff.permute(0, 1, 3, 4, 2).squeeze(0).squeeze(0)
with torch.no_grad():
sparse_maps = sae.encode(diff)
averages = torch.mean(sparse_maps, dim=(0, 1))
top_features = torch.topk(averages, 10).indices
top_features_dict[code] = top_features.cpu().tolist()
sparse_maps_dict[code] = sparse_maps.cpu().numpy()
return top_features_dict, sparse_maps_dict
def plot_image_heatmap(cache, block_select, radio):
code = block_select.split()[0]
feature = int(radio)
block = code_to_block[code]
heatmap = cache["heatmaps"][code][:, :, feature]
heatmap = np.kron(heatmap, np.ones((32, 32)))
image = cache["image"].convert("RGBA")
jet = plt.cm.jet
cmap = jet(np.arange(jet.N))
cmap[:1, -1] = 0
cmap[1:, -1] = 0.6
cmap = ListedColormap(cmap)
heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap))
heatmap_rgba = cmap(heatmap)
heatmap_image = Image.fromarray((heatmap_rgba * 255).astype(np.uint8))
heatmap_with_transparency = Image.alpha_composite(image, heatmap_image)
return heatmap_with_transparency
def create_prompt_part(pipe, saes_dict, demo):
@spaces.GPU
def image_gen(prompt):
lock.acquire()
try:
images, cache = pipe.run_with_cache(
prompt,
positions_to_cache=list(code_to_block.values()),
num_inference_steps=1,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0,
save_input=True,
save_output=True
)
finally:
lock.release()
top_features_dict, top_sparse_maps_dict = process_cache(cache, saes_dict)
return images.images[0], {
"image": images.images[0],
"heatmaps": top_sparse_maps_dict,
"features": top_features_dict
}
def update_radio(cache, block_select):
code = block_select.split()[0]
return gr.update(choices=cache["features"][code])
def update_img(cache, block_select, radio):
new_img = plot_image_heatmap(cache, block_select, radio)
return new_img
with gr.Tab("Explore", elem_classes="tabs") as explore_tab:
cache = gr.State(value={
"image": None,
"heatmaps": None,
"features": []
})
with gr.Row():
with gr.Column(scale=7):
with gr.Row(equal_height=True):
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party and eathing a dish with peas.")
button = gr.Button("Generate", elem_classes="generate_button1")
with gr.Row():
image = gr.Image(width=512, height=512, image_mode="RGB", label="Generated image")
with gr.Column(scale=4):
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block",
elem_id="block_select",
interactive=True
)
radio = gr.Radio(choices=[], label="Select a feature", interactive=True)
button.click(image_gen, [prompt_field], outputs=[image, cache])
cache.change(update_radio, [cache, block_select], outputs=[radio])
block_select.select(update_radio, [cache, block_select], outputs=[radio])
radio.select(update_img, [cache, block_select, radio], outputs=[image])
demo.load(image_gen, [prompt_field], outputs=[image, cache])
return explore_tab
def downsample_mask(image, factor):
downsampled = image.reshape(
(image.shape[0] // factor, factor,
image.shape[1] // factor, factor)
)
downsampled = downsampled.mean(axis=(1, 3))
return downsampled
def create_intervene_part(pipe: HookedStableDiffusionXLPipeline, saes_dict, means_dict, demo):
@spaces.GPU
def image_gen(prompt, num_steps):
lock.acquire()
try:
images = pipe.run_with_hooks(
prompt,
position_hook_dict={},
num_inference_steps=num_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
)
finally:
lock.release()
return images.images[0]
@spaces.GPU
def image_mod(prompt, block_str, brush_index, strength, num_steps, input_image):
block = block_str.split(" ")[0]
mask = (input_image["layers"][0] > 0)[:, :, -1].astype(float)
mask = downsample_mask(mask, 32)
mask = torch.tensor(mask, dtype=torch.float32, device="cuda")
if mask.sum() == 0:
gr.Info("No mask selected, please draw on the input image")
def hook(module, input, output):
return add_feature_on_area(
saes_dict[block],
brush_index,
mask * means_dict[block][brush_index] * strength,
module,
input,
output
)
lock.acquire()
try:
image = pipe.run_with_hooks(
prompt,
position_hook_dict={code_to_block[block]: hook},
num_inference_steps=num_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
).images[0]
finally:
lock.release()
return image
@spaces.GPU
def feature_icon(block_str, brush_index):
block = block_str.split(" ")[0]
if block in ["mid.0", "up.0.0"]:
gr.Info("Note that Feature Icon works best with down.2.1 and up.0.1 blocks but feel free to explore", duration=3)
def hook(module, input, output):
return replace_with_feature(
saes_dict[block],
brush_index,
means_dict[block][brush_index] * saes_dict[block].k,
module,
input,
output
)
lock.acquire()
try:
image = pipe.run_with_hooks(
"",
position_hook_dict={code_to_block[block]: hook},
num_inference_steps=1,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=0.0
).images[0]
finally:
lock.release()
return image
with gr.Tab("Paint!", elem_classes="tabs") as intervene_tab:
image_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=3):
# Generation column
with gr.Row():
# prompt and num_steps
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A dog plays with a ball, cartoon", elem_id="prompt_input")
num_steps = gr.Number(value=1, label="Number of steps", minimum=1, maximum=4, elem_id="num_steps", precision=0)
with gr.Row():
#Generate button
button_generate = gr.Button("Generate", elem_id="generate_button")
with gr.Column(scale=3):
# Intervention column
with gr.Row():
# dropdowns and number inputs
with gr.Column(scale=7):
with gr.Row():
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block",
elem_id="block_select"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, elem_id="brush_index", precision=0)
with gr.Row():
button_icon = gr.Button('Feature Icon', elem_id="feature_icon_button")
with gr.Column(scale=3):
with gr.Row():
strength = gr.Number(value=10, label="Strength", minimum=-40, maximum=40, elem_id="strength", precision=2)
with gr.Row():
button = gr.Button('Apply', elem_id="apply_button")
with gr.Row():
with gr.Column():
# Input image
i_image = gr.Sketchpad(
height=610,
layers=False, transforms=[], placeholder="Generate and paint!",
brush=gr.Brush(default_size=64, color_mode="fixed", colors=['black']),
container=False,
canvas_size=(512, 512),
label="Input Image")
clear_button = gr.Button("Clear")
clear_button.click(lambda x: x, [image_state], [i_image])
# Output image
o_image = gr.Image(width=512, height=512, label="Output Image")
# Set up the click events
button_generate.click(image_gen, inputs=[prompt_field, num_steps], outputs=[image_state])
image_state.change(lambda x: x, [image_state], [i_image])
button.click(image_mod,
inputs=[prompt_field, block_select, brush_index, strength, num_steps, i_image],
outputs=o_image)
button_icon.click(feature_icon, inputs=[block_select, brush_index], outputs=o_image)
demo.load(image_gen, [prompt_field, num_steps], outputs=[image_state])
return intervene_tab
def create_top_images_part(demo):
def update_top_images(block_select, brush_index):
block = block_select.split(" ")[0]
url = f"https://huggingface.co/surokpro2/sdxl_sae_images/resolve/main/{block}/{brush_index}.jpg"
return url
with gr.Tab("Top Images", elem_classes="tabs") as top_images_tab:
with gr.Row():
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, precision=0)
with gr.Row():
image = gr.Image(width=600, height=600, label="Top Images")
block_select.select(update_top_images, [block_select, brush_index], outputs=[image])
brush_index.change(update_top_images, [block_select, brush_index], outputs=[image])
demo.load(update_top_images, [block_select, brush_index], outputs=[image])
return top_images_tab
def create_intro_part():
with gr.Tab("Instructions", elem_classes="tabs") as intro_tab:
gr.Markdown(
'''# Unpacking SDXL Turbo with Sparse Autoencoders
## Demo Overview
This demo showcases the use of Sparse Autoencoders (SAEs) to understand the features learned by the Stable Diffusion XL Turbo model.
## How to Use
### Explore
* Enter a prompt in the text box and click on the "Generate" button to generate an image.
* You can observe the active features in different blocks plot on top of the generated image.
### Top Images
* For each feature, you can view the top images that activate the feature the most.
### Paint!
* Generate an image using the prompt.
* Paint on the generated image to apply interventions.
* Use the "Feature Icon" button to understand how the selected brush functions.
### Remarks
* Not all brushes mix well with all images. Experiment with different brushes and strengths.
* Feature Icon works best with `down.2.1 (composition)` and `up.0.1 (style)` blocks.
* This demo is provided for research purposes only. We do not take responsibility for the content generated by the demo.
### Interesting features to try
To get started, try the following features:
- down.2.1 (composition): 2301 (evil) 3747 (image frame) 4998 (cartoon)
- up.0.1 (style): 4977 (tiger stripes) 90 (fur) 2615 (twilight blur)
'''
)
return intro_tab
def create_demo(pipe, saes_dict, means_dict):
custom_css = """
.tabs button {
font-size: 20px !important; /* Adjust font size for tab text */
padding: 10px !important; /* Adjust padding to make the tabs bigger */
font-weight: bold !important; /* Adjust font weight to make the text bold */
}
.generate_button1 {
max-width: 160px !important;
margin-top: 20px !important;
margin-bottom: 20px !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
with create_intro_part():
pass
with create_prompt_part(pipe, saes_dict, demo):
pass
with create_top_images_part(demo):
pass
with create_intervene_part(pipe, saes_dict, means_dict, demo):
pass
return demo
if __name__ == "__main__":
import os
import gradio as gr
import torch
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
dtype=torch.float32
pipe = HookedStableDiffusionXLPipeline.from_pretrained(
'stabilityai/sdxl-turbo',
torch_dtype=dtype,
variant=("fp16" if dtype==torch.float16 else None)
)
pipe.set_progress_bar_config(disable=True)
pipe.to('cuda')
path_to_checkpoints = './checkpoints/'
code_to_block = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
saes_dict = {}
means_dict = {}
for code, block in code_to_block.items():
sae = SparseAutoencoder.load_from_disk(
os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final"),
)
means = torch.load(
os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final", "mean.pt"),
weights_only=True
)
saes_dict[code] = sae.to('cuda', dtype=dtype)
means_dict[code] = means.to('cuda', dtype=dtype)
demo = create_demo(pipe, saes_dict, means_dict)
demo.launch()
|