surokpro2 commited on
Commit
9361188
·
verified ·
1 Parent(s): f408a72

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -1
README.md CHANGED
@@ -1,6 +1,82 @@
1
  ---
2
- title: Unboxing_SDXL_with_SAEs
3
  app_file: app.py
4
  sdk: gradio
5
  sdk_version: 4.44.1
6
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Unboxing SDXL with SAEs
3
  app_file: app.py
4
  sdk: gradio
5
  sdk_version: 4.44.1
6
  ---
7
+
8
+ # Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse Autoencoders
9
+
10
+ ![modification demostration](resourses/image.png)
11
+
12
+ This repository contains code to reproduce results from our paper (https://arxiv.org/abs/2410.22366) on using sparse autoencoders (SAEs) to analyze and interpret the internal representations of text-to-image diffusion models, specifically SDXL Turbo.
13
+
14
+ ## Repository Structure
15
+
16
+ ```
17
+ |-- SAE/ # Core sparse autoencoder implementation
18
+ |-- SDLens/ # Tools for analyzing diffusion models
19
+ | `-- hooked_sd_pipeline.py # Modified stable diffusion pipeline
20
+ |-- scripts/
21
+ | |-- collect_latents_dataset.py # Generate training data
22
+ | `-- train_sae.py # Train SAE models
23
+ |-- utils/
24
+ | `-- hooks.py # Hook utility functions
25
+ |-- checkpoints/ # Pretrained SAE model checkpoints
26
+ |-- app.py # Demo application
27
+ |-- app.ipynb # Interactive notebook demo
28
+ |-- example.ipynb # Usage examples
29
+ `-- requirements.txt # Python dependencies
30
+ ```
31
+
32
+ ## Installation
33
+
34
+ ```bash
35
+ pip install -r requirements.txt
36
+ ```
37
+
38
+ ## Demo Application
39
+
40
+ You can try our gradio demo application (`app.ipynb`) to browse and experiment with 20K+ features of our trained SAEs out-of-the-box. You can find the same notebook on [Google Colab](https://colab.research.google.com/drive/1Sd-g3w2Fwv7pc_fxgeQOR3S_RKr18qMP?usp=sharing).
41
+
42
+ ## Usage
43
+
44
+ 1. Collect latent data from SDXL Turbo:
45
+ ```bash
46
+ python scripts/collect_latents_dataset.py --save_path={your_save_path}
47
+ ```
48
+
49
+ 2. Train sparse autoencoders:
50
+
51
+ 2.1. Insert the path of stored latents and directory to store checkpoints in `SAE/config.json`
52
+
53
+ 2.2. Run the training script:
54
+
55
+ ```bash
56
+ python scripts/train_sae.py
57
+ ```
58
+
59
+ ## Pretrained Models
60
+
61
+ We provide pretrained SAE checkpoints for 4 key transformer blocks in SDXL Turbo's U-Net. See `example.ipynb` for analysis examples and visualization of learned features.
62
+
63
+
64
+ ## Citation
65
+
66
+ If you find this code useful in your research, please cite our paper:
67
+
68
+ ```bibtex
69
+ @misc{surkov2024unpackingsdxlturbointerpreting,
70
+ title={Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse Autoencoders},
71
+ author={Viacheslav Surkov and Chris Wendler and Mikhail Terekhov and Justin Deschenaux and Robert West and Caglar Gulcehre},
72
+ year={2024},
73
+ eprint={2410.22366},
74
+ archivePrefix={arXiv},
75
+ primaryClass={cs.LG},
76
+ url={https://arxiv.org/abs/2410.22366},
77
+ }
78
+ ```
79
+
80
+ ## Acknowledgements
81
+
82
+ The SAE component was implemented based on [`openai/sparse_autoencoder`](https://github.com/openai/sparse_autoencoder) repository.