Spaces:
Running
Running
File size: 5,242 Bytes
5c72fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import numpy as np
from scipy.special import softmax
class CELoss(object):
def compute_bin_boundaries(self, probabilities = np.array([])):
#uniform bin spacing
if probabilities.size == 0:
bin_boundaries = np.linspace(0, 1, self.n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
else:
#size of bins
bin_n = int(self.n_data/self.n_bins)
bin_boundaries = np.array([])
probabilities_sort = np.sort(probabilities)
for i in range(0,self.n_bins):
bin_boundaries = np.append(bin_boundaries,probabilities_sort[i*bin_n])
bin_boundaries = np.append(bin_boundaries,1.0)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def get_probabilities(self, output, labels, logits):
#If not probabilities apply softmax!
if logits:
self.probabilities = softmax(output, axis=1)
else:
self.probabilities = output
self.labels = labels
self.confidences = np.max(self.probabilities, axis=1)
self.predictions = np.argmax(self.probabilities, axis=1)
self.accuracies = np.equal(self.predictions,labels)
def binary_matrices(self):
idx = np.arange(self.n_data)
#make matrices of zeros
pred_matrix = np.zeros([self.n_data,self.n_class])
label_matrix = np.zeros([self.n_data,self.n_class])
#self.acc_matrix = np.zeros([self.n_data,self.n_class])
pred_matrix[idx,self.predictions] = 1
label_matrix[idx,self.labels] = 1
self.acc_matrix = np.equal(pred_matrix, label_matrix)
def compute_bins(self, index = None):
self.bin_prop = np.zeros(self.n_bins)
self.bin_acc = np.zeros(self.n_bins)
self.bin_conf = np.zeros(self.n_bins)
self.bin_score = np.zeros(self.n_bins)
if index == None:
confidences = self.confidences
accuracies = self.accuracies
else:
confidences = self.probabilities[:,index]
accuracies = self.acc_matrix[:,index]
for i, (bin_lower, bin_upper) in enumerate(zip(self.bin_lowers, self.bin_uppers)):
# Calculated |confidence - accuracy| in each bin
in_bin = np.greater(confidences,bin_lower.item()) * np.less_equal(confidences,bin_upper.item())
self.bin_prop[i] = np.mean(in_bin)
if self.bin_prop[i].item() > 0:
self.bin_acc[i] = np.mean(accuracies[in_bin])
self.bin_conf[i] = np.mean(confidences[in_bin])
self.bin_score[i] = np.abs(self.bin_conf[i] - self.bin_acc[i])
class MaxProbCELoss(CELoss):
def loss(self, output, labels, n_bins = 15, logits = True):
self.n_bins = n_bins
super().compute_bin_boundaries()
super().get_probabilities(output, labels, logits)
super().compute_bins()
#http://people.cs.pitt.edu/~milos/research/AAAI_Calibration.pdf
class ECELoss(MaxProbCELoss):
def loss(self, output, labels, n_bins = 15, logits = True):
super().loss(output, labels, n_bins, logits)
return np.dot(self.bin_prop,self.bin_score)
class MCELoss(MaxProbCELoss):
def loss(self, output, labels, n_bins = 15, logits = True):
super().loss(output, labels, n_bins, logits)
return np.max(self.bin_score)
#https://arxiv.org/abs/1905.11001
#Overconfidence Loss (Good in high risk applications where confident but wrong predictions can be especially harmful)
class OELoss(MaxProbCELoss):
def loss(self, output, labels, n_bins = 15, logits = True):
super().loss(output, labels, n_bins, logits)
return np.dot(self.bin_prop,self.bin_conf * np.maximum(self.bin_conf-self.bin_acc,np.zeros(self.n_bins)))
#https://arxiv.org/abs/1904.01685
class SCELoss(CELoss):
def loss(self, output, labels, n_bins = 15, logits = True):
sce = 0.0
self.n_bins = n_bins
self.n_data = len(output)
self.n_class = len(output[0])
super().compute_bin_boundaries()
super().get_probabilities(output, labels, logits)
super().binary_matrices()
for i in range(self.n_class):
super().compute_bins(i)
sce += np.dot(self.bin_prop,self.bin_score)
return sce/self.n_class
class TACELoss(CELoss):
def loss(self, output, labels, threshold = 0.01, n_bins = 15, logits = True):
tace = 0.0
self.n_bins = n_bins
self.n_data = len(output)
self.n_class = len(output[0])
super().get_probabilities(output, labels, logits)
self.probabilities[self.probabilities < threshold] = 0
super().binary_matrices()
for i in range(self.n_class):
super().compute_bin_boundaries(self.probabilities[:,i])
super().compute_bins(i)
tace += np.dot(self.bin_prop,self.bin_score)
return tace/self.n_class
#create TACELoss with threshold fixed at 0
class ACELoss(TACELoss):
def loss(self, output, labels, n_bins = 15, logits = True):
return super().loss(output, labels, 0.0 , n_bins, logits)
|