astra / data_preprocessor.py
suryadev1's picture
fine
5c72fe4
raw
history blame
9.05 kB
import time
import pandas as pd
import sys
class DataPreprocessor:
def __init__(self, input_file_path):
self.input_file_path = input_file_path
self.unique_students = None
self.unique_problems = None
self.unique_prob_hierarchy = None
self.unique_steps = None
self.unique_kcs = None
def analyze_dataset(self):
file_iterator = self.load_file_iterator()
start_time = time.time()
self.unique_students = {"st"}
self.unique_problems = {"pr"}
self.unique_prob_hierarchy = {"ph"}
self.unique_kcs = {"kc"}
for chunk_data in file_iterator:
for student_id, std_groups in chunk_data.groupby('Anon Student Id'):
self.unique_students.update({student_id})
prob_hierarchy = std_groups.groupby('Level (Workspace Id)')
for hierarchy, hierarchy_groups in prob_hierarchy:
self.unique_prob_hierarchy.update({hierarchy})
prob_name = hierarchy_groups.groupby('Problem Name')
for problem_name, prob_name_groups in prob_name:
self.unique_problems.update({problem_name})
sub_skills = prob_name_groups['KC Model(MATHia)']
for a in sub_skills:
if str(a) != "nan":
temp = a.split("~~")
for kc in temp:
self.unique_kcs.update({kc})
self.unique_students.remove("st")
self.unique_problems.remove("pr")
self.unique_prob_hierarchy.remove("ph")
self.unique_kcs.remove("kc")
end_time = time.time()
print("Time Taken to analyze dataset = ", end_time - start_time)
print("Length of unique students->", len(self.unique_students))
print("Length of unique problems->", len(self.unique_problems))
print("Length of unique problem hierarchy->", len(self.unique_prob_hierarchy))
print("Length of Unique Knowledge components ->", len(self.unique_kcs))
def analyze_dataset_by_section(self, workspace_name):
file_iterator = self.load_file_iterator()
start_time = time.time()
self.unique_students = {"st"}
self.unique_problems = {"pr"}
self.unique_prob_hierarchy = {"ph"}
self.unique_steps = {"s"}
self.unique_kcs = {"kc"}
# with open("workspace_info.txt", 'a') as f:
# sys.stdout = f
for chunk_data in file_iterator:
for student_id, std_groups in chunk_data.groupby('Anon Student Id'):
prob_hierarchy = std_groups.groupby('Level (Workspace Id)')
for hierarchy, hierarchy_groups in prob_hierarchy:
if workspace_name == hierarchy:
# print("Workspace : ", hierarchy)
self.unique_students.update({student_id})
self.unique_prob_hierarchy.update({hierarchy})
prob_name = hierarchy_groups.groupby('Problem Name')
for problem_name, prob_name_groups in prob_name:
self.unique_problems.update({problem_name})
step_names = prob_name_groups['Step Name']
sub_skills = prob_name_groups['KC Model(MATHia)']
for step in step_names:
if str(step) != "nan":
self.unique_steps.update({step})
for a in sub_skills:
if str(a) != "nan":
temp = a.split("~~")
for kc in temp:
self.unique_kcs.update({kc})
self.unique_problems.remove("pr")
self.unique_prob_hierarchy.remove("ph")
self.unique_steps.remove("s")
self.unique_kcs.remove("kc")
end_time = time.time()
print("Time Taken to analyze dataset = ", end_time - start_time)
print("Workspace-> ",workspace_name)
print("Length of unique students->", len(self.unique_students))
print("Length of unique problems->", len(self.unique_problems))
print("Length of unique problem hierarchy->", len(self.unique_prob_hierarchy))
print("Length of unique step names ->", len(self.unique_steps))
print("Length of unique knowledge components ->", len(self.unique_kcs))
# f.close()
# sys.stdout = sys.__stdout__
def analyze_dataset_by_school(self, workspace_name, school_id=None):
file_iterator = self.load_file_iterator(sep=",")
start_time = time.time()
self.unique_schools = set()
self.unique_class = set()
self.unique_students = set()
self.unique_problems = set()
self.unique_steps = set()
self.unique_kcs = set()
self.unique_actions = set()
self.unique_outcomes = set()
self.unique_new_steps_w_action_attempt = set()
self.unique_new_steps_w_kcs = set()
self.unique_new_steps_w_action_attempt_kcs = set()
for chunk_data in file_iterator:
for school, school_group in chunk_data.groupby('CF (Anon School Id)'):
# if school and school == school_id:
self.unique_schools.add(school)
for class_id, class_group in school_group.groupby('CF (Anon Class Id)'):
self.unique_class.add(class_id)
for student_id, std_group in class_group.groupby('Anon Student Id'):
self.unique_students.add(student_id)
for prob, prob_group in std_group.groupby('Problem Name'):
self.unique_problems.add(prob)
step_names = set(prob_group['Step Name'])
sub_skills = set(prob_group['KC Model(MATHia)'])
actions = set(prob_group['Action'])
outcomes = set(prob_group['Outcome'])
self.unique_steps.update(step_names)
self.unique_kcs.update(sub_skills)
self.unique_actions.update(actions)
self.unique_outcomes.update(outcomes)
for step in step_names:
if pd.isna(step):
step_group = prob_group[pd.isna(prob_group['Step Name'])]
else:
step_group = prob_group[prob_group['Step Name']==step]
for kc in set(step_group['KC Model(MATHia)']):
new_step = f"{step}:{kc}"
self.unique_new_steps_w_kcs.add(new_step)
for action, action_group in step_group.groupby('Action'):
for attempt, attempt_group in action_group.groupby('Attempt At Step'):
new_step = f"{step}:{action}:{attempt}"
self.unique_new_steps_w_action_attempt.add(new_step)
for kc in set(attempt_group["KC Model(MATHia)"]):
new_step = f"{step}:{action}:{attempt}:{kc}"
self.unique_new_steps_w_action_attempt_kcs.add(new_step)
end_time = time.time()
print("Time Taken to analyze dataset = ", end_time - start_time)
print("Workspace-> ",workspace_name)
print("Length of unique students->", len(self.unique_students))
print("Length of unique problems->", len(self.unique_problems))
print("Length of unique classes->", len(self.unique_class))
print("Length of unique step names ->", len(self.unique_steps))
print("Length of unique knowledge components ->", len(self.unique_kcs))
print("Length of unique actions ->", len(self.unique_actions))
print("Length of unique outcomes ->", len(self.unique_outcomes))
print("Length of unique new step names with actions and attempts ->", len(self.unique_new_steps_w_action_attempt))
print("Length of unique new step names with actions, attempts and kcs ->", len(self.unique_new_steps_w_action_attempt_kcs))
print("Length of unique new step names with kcs ->", len(self.unique_new_steps_w_kcs))
def load_file_iterator(self, sep="\t"):
chunk_iterator = pd.read_csv(self.input_file_path, sep=sep, header=0, iterator=True, chunksize=1000000)
return chunk_iterator