Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from .bert import BERT | |
class BERTForClassification(nn.Module): | |
""" | |
Fine-tune Task Classifier Model | |
""" | |
def __init__(self, bert: BERT, vocab_size, n_labels): | |
""" | |
:param bert: BERT model which should be trained | |
:param vocab_size: total vocab size | |
:param n_labels: number of labels for the task | |
""" | |
super().__init__() | |
self.bert = bert | |
self.linear = nn.Linear(self.bert.hidden, n_labels) | |
def forward(self, x, segment_label): | |
x = self.bert(x, segment_label) | |
return self.linear(x[:, 0]) | |
class BERTForClassificationWithFeats(nn.Module): | |
""" | |
Fine-tune Task Classifier Model | |
BERT embeddings concatenated with features | |
""" | |
def __init__(self, bert: BERT, n_labels, feat_size=9): | |
""" | |
:param bert: BERT model which should be trained | |
:param vocab_size: total vocab size | |
:param n_labels: number of labels for the task | |
""" | |
super().__init__() | |
self.bert = bert | |
# self.linear1 = nn.Linear(self.bert.hidden+feat_size, 128) | |
self.linear = nn.Linear(self.bert.hidden+feat_size, n_labels) | |
# self.RELU = nn.ReLU() | |
# self.linear2 = nn.Linear(128, n_labels) | |
def forward(self, x, segment_label, feat): | |
x = self.bert(x, segment_label) | |
x = torch.cat((x[:, 0], feat), dim=-1) | |
# x = self.linear1(x) | |
# x = self.RELU(x) | |
# return self.linear2(x) | |
return self.linear(x) |