Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
# from torch.nn import functional as F | |
from torch.optim import Adam | |
from torch.utils.data import DataLoader | |
# import pickle | |
from .bert import BERT | |
from .seq_model import BERTSM | |
from .classifier_model import BERTForClassification, BERTForClassificationWithFeats | |
from .optim_schedule import ScheduledOptim | |
import tqdm | |
import sys | |
import time | |
import numpy as np | |
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import pandas as pd | |
from collections import defaultdict | |
import os | |
class BERTTrainer: | |
""" | |
BERTTrainer pretrains BERT model on input sequence of strategies. | |
BERTTrainer make the pretrained BERT model with one training method objective. | |
1. Masked Strategy Modeling :Masked SM | |
""" | |
def __init__(self, bert: BERT, vocab_size: int, | |
train_dataloader: DataLoader, val_dataloader: DataLoader = None, test_dataloader: DataLoader = None, | |
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=5000, | |
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, log_folder_path: str = None): | |
""" | |
:param bert: BERT model which you want to train | |
:param vocab_size: total word vocab size | |
:param train_dataloader: train dataset data loader | |
:param test_dataloader: test dataset data loader [can be None] | |
:param lr: learning rate of optimizer | |
:param betas: Adam optimizer betas | |
:param weight_decay: Adam optimizer weight decay param | |
:param with_cuda: traning with cuda | |
:param log_freq: logging frequency of the batch iteration | |
""" | |
cuda_condition = torch.cuda.is_available() and with_cuda | |
self.device = torch.device("cuda:0" if cuda_condition else "cpu") | |
print(cuda_condition, " Device used = ", self.device) | |
available_gpus = list(range(torch.cuda.device_count())) | |
# This BERT model will be saved | |
self.bert = bert.to(self.device) | |
# Initialize the BERT Sequence Model, with BERT model | |
self.model = BERTSM(bert, vocab_size).to(self.device) | |
# Distributed GPU training if CUDA can detect more than 1 GPU | |
if with_cuda and torch.cuda.device_count() > 1: | |
print("Using %d GPUS for BERT" % torch.cuda.device_count()) | |
self.model = nn.DataParallel(self.model, device_ids=available_gpus) | |
# Setting the train, validation and test data loader | |
self.train_data = train_dataloader | |
self.val_data = val_dataloader | |
self.test_data = test_dataloader | |
# Setting the Adam optimizer with hyper-param | |
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) | |
self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps) | |
# Using Negative Log Likelihood Loss function for predicting the masked_token | |
self.criterion = nn.NLLLoss(ignore_index=0) | |
self.log_freq = log_freq | |
self.log_folder_path = log_folder_path | |
# self.workspace_name = workspace_name | |
self.save_model = False | |
# self.code = code | |
self.avg_loss = 10000 | |
for fi in ['train', 'val', 'test']: | |
f = open(self.log_folder_path+f"/log_{fi}_pretrained.txt", 'w') | |
f.close() | |
self.start_time = time.time() | |
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()])) | |
def train(self, epoch): | |
self.iteration(epoch, self.train_data) | |
def val(self, epoch): | |
if epoch == 0: | |
self.avg_loss = 10000 | |
self.iteration(epoch, self.val_data, phase="val") | |
def test(self, epoch): | |
self.iteration(epoch, self.test_data, phase="test") | |
def iteration(self, epoch, data_loader, phase="train"): | |
""" | |
loop over the data_loader for training or testing | |
if on train status, backward operation is activated | |
and also auto save the model every peoch | |
:param epoch: current epoch index | |
:param data_loader: torch.utils.data.DataLoader for iteration | |
:param train: boolean value of is train or test | |
:return: None | |
""" | |
# self.log_file = f"{self.workspace_name}/logs/{self.code}/log_{phase}_pretrained.txt" | |
# bert_hidden_representations = [] can be used | |
# if epoch == 0: | |
# f = open(self.log_file, 'w') | |
# f.close() | |
# Progress bar | |
data_iter = tqdm.tqdm(enumerate(data_loader), | |
desc="EP_%s:%d" % (phase, epoch), | |
total=len(data_loader), | |
bar_format="{l_bar}{r_bar}") | |
total_correct = 0 | |
total_element = 0 | |
avg_loss = 0.0 | |
if phase == "train": | |
self.model.train() | |
else: | |
self.model.eval() | |
with open(self.log_folder_path+f"/log_{phase}_pretrained.txt", 'a') as f: | |
sys.stdout = f | |
for i, data in data_iter: | |
# 0. batch_data will be sent into the device(GPU or cpu) | |
data = {key: value.to(self.device) for key, value in data.items()} | |
# 1. forward masked_sm model | |
# mask_sm_output is log-probabilities output | |
mask_sm_output, bert_hidden_rep = self.model.forward(data["bert_input"], data["segment_label"]) | |
# 2. NLLLoss of predicting masked token word | |
loss = self.criterion(mask_sm_output.transpose(1, 2), data["bert_label"]) | |
if torch.cuda.device_count() > 1: | |
loss = loss.mean() | |
# 3. backward and optimization only in train | |
if phase == "train": | |
self.optim_schedule.zero_grad() | |
loss.backward() | |
self.optim_schedule.step_and_update_lr() | |
# tokens with highest log-probabilities creates a predicted sequence | |
pred_tokens = torch.argmax(mask_sm_output, dim=-1) | |
mask_correct = (data["bert_label"] == pred_tokens) & data["masked_pos"] | |
total_correct += mask_correct.sum().item() | |
total_element += data["masked_pos"].sum().item() | |
avg_loss +=loss.item() | |
torch.cuda.empty_cache() | |
post_fix = { | |
"epoch": epoch, | |
"iter": i, | |
"avg_loss": avg_loss / (i + 1), | |
"avg_acc_mask": (total_correct / total_element * 100) if total_element != 0 else 0, | |
"loss": loss.item() | |
} | |
if i % self.log_freq == 0: | |
data_iter.write(str(post_fix)) | |
end_time = time.time() | |
final_msg = { | |
"epoch": f"EP{epoch}_{phase}", | |
"avg_loss": avg_loss / len(data_iter), | |
"total_masked_acc": (total_correct / total_element * 100) if total_element != 0 else 0, | |
"time_taken_from_start": end_time - self.start_time | |
} | |
print(final_msg) | |
f.close() | |
sys.stdout = sys.__stdout__ | |
if phase == "val": | |
self.save_model = False | |
if self.avg_loss > (avg_loss / len(data_iter)): | |
self.save_model = True | |
self.avg_loss = (avg_loss / len(data_iter)) | |
def save(self, epoch, file_path="output/bert_trained.model"): | |
""" | |
Saving the current BERT model on file_path | |
:param epoch: current epoch number | |
:param file_path: model output path which gonna be file_path+"ep%d" % epoch | |
:return: final_output_path | |
""" | |
output_path = file_path + ".ep%d" % epoch | |
torch.save(self.bert.cpu(), output_path) | |
self.bert.to(self.device) | |
print("EP:%d Model Saved on:" % epoch, output_path) | |
return output_path | |
class BERTFineTuneTrainer: | |
def __init__(self, bert: BERT, vocab_size: int, | |
train_dataloader: DataLoader, test_dataloader: DataLoader = None, | |
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000, | |
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, | |
num_labels=2, log_folder_path: str = None): | |
""" | |
:param bert: BERT model which you want to train | |
:param vocab_size: total word vocab size | |
:param train_dataloader: train dataset data loader | |
:param test_dataloader: test dataset data loader [can be None] | |
:param lr: learning rate of optimizer | |
:param betas: Adam optimizer betas | |
:param weight_decay: Adam optimizer weight decay param | |
:param with_cuda: traning with cuda | |
:param log_freq: logging frequency of the batch iteration | |
""" | |
# Setup cuda device for BERT training, argument -c, --cuda should be true | |
cuda_condition = torch.cuda.is_available() and with_cuda | |
self.device = torch.device("cuda:0" if cuda_condition else "cpu") | |
print(cuda_condition, " Device used = ", self.device) | |
available_gpus = list(range(torch.cuda.device_count())) | |
# This BERT model will be saved every epoch | |
self.bert = bert | |
for param in self.bert.parameters(): | |
param.requires_grad = False | |
# for name, param in self.bert.named_parameters(): | |
# if '.attention.linear_layers.0' in name or \ | |
# '.attention.linear_layers.1' in name or \ | |
# '.attention.linear_layers.2' in name: | |
# # if 'transformer_blocks.' in name:# or \ | |
# # 'transformer_blocks.3.' in name: | |
# # if '2.attention.linear_layers.' in name or \ | |
# # '3.attention.linear_layers.' in name: | |
# param.requires_grad = True | |
# Initialize the BERT Language Model, with BERT model | |
# self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8).to(self.device) | |
self.model = BERTForClassificationWithFeats(self.bert, num_labels, 17).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 1).to(self.device) | |
# Distributed GPU training if CUDA can detect more than 1 GPU | |
if with_cuda and torch.cuda.device_count() > 1: | |
print("Using %d GPUS for BERT" % torch.cuda.device_count()) | |
self.model = nn.DataParallel(self.model, device_ids=available_gpus) | |
# Setting the train, validation and test data loader | |
self.train_data = train_dataloader | |
# self.val_data = val_dataloader | |
self.test_data = test_dataloader | |
# self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) #, eps=1e-9 | |
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) | |
self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps) | |
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1) | |
self.criterion = nn.CrossEntropyLoss() | |
# if num_labels == 1: | |
# self.criterion = nn.MSELoss() | |
# elif num_labels == 2: | |
# self.criterion = nn.BCEWithLogitsLoss() | |
# # self.criterion = nn.CrossEntropyLoss() | |
# elif num_labels > 2: | |
# self.criterion = nn.CrossEntropyLoss() | |
# self.criterion = nn.BCEWithLogitsLoss() | |
self.log_freq = log_freq | |
self.log_folder_path = log_folder_path | |
# self.workspace_name = workspace_name | |
# self.finetune_task = finetune_task | |
self.save_model = False | |
self.avg_loss = 10000 | |
self.start_time = time.time() | |
# self.probability_list = [] | |
for fi in ['train', 'test']: #'val', | |
f = open(self.log_folder_path+f"/log_{fi}_finetuned.txt", 'w') | |
f.close() | |
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()])) | |
def train(self, epoch): | |
self.iteration(epoch, self.train_data) | |
# def val(self, epoch): | |
# self.iteration(epoch, self.val_data, phase="val") | |
def test(self, epoch): | |
if epoch == 0: | |
self.avg_loss = 10000 | |
self.iteration(epoch, self.test_data, phase="test") | |
def iteration(self, epoch, data_loader, phase="train"): | |
""" | |
loop over the data_loader for training or testing | |
if on train status, backward operation is activated | |
and also auto save the model every peoch | |
:param epoch: current epoch index | |
:param data_loader: torch.utils.data.DataLoader for iteration | |
:param train: boolean value of is train or test | |
:return: None | |
""" | |
# Setting the tqdm progress bar | |
data_iter = tqdm.tqdm(enumerate(data_loader), | |
desc="EP_%s:%d" % (phase, epoch), | |
total=len(data_loader), | |
bar_format="{l_bar}{r_bar}") | |
avg_loss = 0.0 | |
total_correct = 0 | |
total_element = 0 | |
plabels = [] | |
tlabels = [] | |
probabs = [] | |
if phase == "train": | |
self.model.train() | |
else: | |
self.model.eval() | |
# self.probability_list = [] | |
with open(self.log_folder_path+f"/log_{phase}_finetuned.txt", 'a') as f: | |
sys.stdout = f | |
for i, data in data_iter: | |
# 0. batch_data will be sent into the device(GPU or cpu) | |
data = {key: value.to(self.device) for key, value in data.items()} | |
if phase == "train": | |
logits = self.model.forward(data["input"], data["segment_label"], data["feat"]) | |
else: | |
with torch.no_grad(): | |
logits = self.model.forward(data["input"], data["segment_label"], data["feat"]) | |
loss = self.criterion(logits, data["label"]) | |
if torch.cuda.device_count() > 1: | |
loss = loss.mean() | |
# 3. backward and optimization only in train | |
if phase == "train": | |
self.optim_schedule.zero_grad() | |
loss.backward() | |
self.optim_schedule.step_and_update_lr() | |
# prediction accuracy | |
probs = nn.Softmax(dim=-1)(logits) # Probabilities | |
probabs.extend(probs.detach().cpu().numpy().tolist()) | |
predicted_labels = torch.argmax(probs, dim=-1) #correct | |
# self.probability_list.append(probs) | |
# true_labels = torch.argmax(data["label"], dim=-1) | |
plabels.extend(predicted_labels.cpu().numpy()) | |
tlabels.extend(data['label'].cpu().numpy()) | |
# Compare predicted labels to true labels and calculate accuracy | |
correct = (data['label'] == predicted_labels).sum().item() | |
avg_loss += loss.item() | |
total_correct += correct | |
# total_element += true_labels.nelement() | |
total_element += data["label"].nelement() | |
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels, correct, total_correct, total_element) | |
post_fix = { | |
"epoch": epoch, | |
"iter": i, | |
"avg_loss": avg_loss / (i + 1), | |
"avg_acc": total_correct / total_element * 100 if total_element != 0 else 0, | |
"loss": loss.item() | |
} | |
if i % self.log_freq == 0: | |
data_iter.write(str(post_fix)) | |
precisions = precision_score(tlabels, plabels, average="weighted", zero_division=0) | |
recalls = recall_score(tlabels, plabels, average="weighted") | |
f1_scores = f1_score(tlabels, plabels, average="weighted") | |
cmatrix = confusion_matrix(tlabels, plabels) | |
end_time = time.time() | |
final_msg = { | |
"epoch": f"EP{epoch}_{phase}", | |
"avg_loss": avg_loss / len(data_iter), | |
"total_acc": total_correct * 100.0 / total_element, | |
"precisions": precisions, | |
"recalls": recalls, | |
"f1_scores": f1_scores, | |
# "confusion_matrix": f"{cmatrix}", | |
# "true_labels": f"{tlabels}", | |
# "predicted_labels": f"{plabels}", | |
"time_taken_from_start": end_time - self.start_time | |
} | |
print(final_msg) | |
f.close() | |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1: | |
sys.stdout = f1 | |
final_msg = { | |
"epoch": f"EP{epoch}_{phase}", | |
"confusion_matrix": f"{cmatrix}", | |
"true_labels": f"{tlabels if epoch == 0 else ''}", | |
"predicted_labels": f"{plabels}", | |
"probabilities": f"{probabs}", | |
"time_taken_from_start": end_time - self.start_time | |
} | |
print(final_msg) | |
f1.close() | |
sys.stdout = sys.__stdout__ | |
sys.stdout = sys.__stdout__ | |
if phase == "test": | |
self.save_model = False | |
if self.avg_loss > (avg_loss / len(data_iter)): | |
self.save_model = True | |
self.avg_loss = (avg_loss / len(data_iter)) | |
def iteration_1(self, epoch_idx, data): | |
try: | |
data = {key: value.to(self.device) for key, value in data.items()} | |
logits = self.model(data['input_ids'], data['segment_label']) | |
# Ensure logits is a tensor, not a tuple | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(logits, data['labels']) | |
# Backpropagation and optimization | |
self.optim.zero_grad() | |
loss.backward() | |
self.optim.step() | |
if self.log_freq > 0 and epoch_idx % self.log_freq == 0: | |
print(f"Epoch {epoch_idx}: Loss = {loss.item()}") | |
return loss | |
except Exception as e: | |
print(f"Error during iteration: {e}") | |
raise | |
def save(self, epoch, file_path="output/bert_fine_tuned_trained.model"): | |
""" | |
Saving the current BERT model on file_path | |
:param epoch: current epoch number | |
:param file_path: model output path which gonna be file_path+"ep%d" % epoch | |
:return: final_output_path | |
""" | |
output_path = file_path + ".ep%d" % epoch | |
torch.save(self.model.cpu(), output_path) | |
self.model.to(self.device) | |
print("EP:%d Model Saved on:" % epoch, output_path) | |
return output_path | |
class BERTFineTuneTrainer1: | |
def __init__(self, bert: BERT, vocab_size: int, | |
train_dataloader: DataLoader, test_dataloader: DataLoader = None, | |
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000, | |
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, | |
num_labels=2, log_folder_path: str = None): | |
""" | |
:param bert: BERT model which you want to train | |
:param vocab_size: total word vocab size | |
:param train_dataloader: train dataset data loader | |
:param test_dataloader: test dataset data loader [can be None] | |
:param lr: learning rate of optimizer | |
:param betas: Adam optimizer betas | |
:param weight_decay: Adam optimizer weight decay param | |
:param with_cuda: traning with cuda | |
:param log_freq: logging frequency of the batch iteration | |
""" | |
# Setup cuda device for BERT training, argument -c, --cuda should be true | |
cuda_condition = torch.cuda.is_available() and with_cuda | |
self.device = torch.device("cuda:0" if cuda_condition else "cpu") | |
print(cuda_condition, " Device used = ", self.device) | |
available_gpus = list(range(torch.cuda.device_count())) | |
# This BERT model will be saved every epoch | |
self.bert = bert | |
for param in self.bert.parameters(): | |
param.requires_grad = False | |
# Initialize the BERT Language Model, with BERT model | |
self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8*2).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 1).to(self.device) | |
# Distributed GPU training if CUDA can detect more than 1 GPU | |
if with_cuda and torch.cuda.device_count() > 1: | |
print("Using %d GPUS for BERT" % torch.cuda.device_count()) | |
self.model = nn.DataParallel(self.model, device_ids=available_gpus) | |
# Setting the train, validation and test data loader | |
self.train_data = train_dataloader | |
# self.val_data = val_dataloader | |
self.test_data = test_dataloader | |
# self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) #, eps=1e-9 | |
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) | |
self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps) | |
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1) | |
self.criterion = nn.CrossEntropyLoss() | |
# if num_labels == 1: | |
# self.criterion = nn.MSELoss() | |
# elif num_labels == 2: | |
# self.criterion = nn.BCEWithLogitsLoss() | |
# # self.criterion = nn.CrossEntropyLoss() | |
# elif num_labels > 2: | |
# self.criterion = nn.CrossEntropyLoss() | |
# self.criterion = nn.BCEWithLogitsLoss() | |
self.log_freq = log_freq | |
self.log_folder_path = log_folder_path | |
# self.workspace_name = workspace_name | |
# self.finetune_task = finetune_task | |
self.save_model = False | |
self.avg_loss = 10000 | |
self.start_time = time.time() | |
# self.probability_list = [] | |
for fi in ['train', 'test']: #'val', | |
f = open(self.log_folder_path+f"/log_{fi}_finetuned.txt", 'w') | |
f.close() | |
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()])) | |
def train(self, epoch): | |
self.iteration(epoch, self.train_data) | |
# def val(self, epoch): | |
# self.iteration(epoch, self.val_data, phase="val") | |
def test(self, epoch): | |
if epoch == 0: | |
self.avg_loss = 10000 | |
self.iteration(epoch, self.test_data, phase="test") | |
def iteration(self, epoch, data_loader, phase="train"): | |
""" | |
loop over the data_loader for training or testing | |
if on train status, backward operation is activated | |
and also auto save the model every peoch | |
:param epoch: current epoch index | |
:param data_loader: torch.utils.data.DataLoader for iteration | |
:param train: boolean value of is train or test | |
:return: None | |
""" | |
# Setting the tqdm progress bar | |
data_iter = tqdm.tqdm(enumerate(data_loader), | |
desc="EP_%s:%d" % (phase, epoch), | |
total=len(data_loader), | |
bar_format="{l_bar}{r_bar}") | |
avg_loss = 0.0 | |
total_correct = 0 | |
total_element = 0 | |
plabels = [] | |
tlabels = [] | |
probabs = [] | |
if phase == "train": | |
self.model.train() | |
else: | |
self.model.eval() | |
# self.probability_list = [] | |
with open(self.log_folder_path+f"/log_{phase}_finetuned.txt", 'a') as f: | |
sys.stdout = f | |
for i, data in data_iter: | |
# 0. batch_data will be sent into the device(GPU or cpu) | |
data = {key: value.to(self.device) for key, value in data.items()} | |
if phase == "train": | |
logits = self.model.forward(data["input"], data["segment_label"])#, data["feat"]) | |
else: | |
with torch.no_grad(): | |
logits = self.model.forward(data["input"], data["segment_label"])#, data["feat"]) | |
loss = self.criterion(logits, data["label"]) | |
if torch.cuda.device_count() > 1: | |
loss = loss.mean() | |
# 3. backward and optimization only in train | |
if phase == "train": | |
self.optim_schedule.zero_grad() | |
loss.backward() | |
self.optim_schedule.step_and_update_lr() | |
# prediction accuracy | |
probs = nn.Softmax(dim=-1)(logits) # Probabilities | |
probabs.extend(probs.detach().cpu().numpy().tolist()) | |
predicted_labels = torch.argmax(probs, dim=-1) #correct | |
# self.probability_list.append(probs) | |
# true_labels = torch.argmax(data["label"], dim=-1) | |
plabels.extend(predicted_labels.cpu().numpy()) | |
tlabels.extend(data['label'].cpu().numpy()) | |
# Compare predicted labels to true labels and calculate accuracy | |
correct = (data['label'] == predicted_labels).sum().item() | |
avg_loss += loss.item() | |
total_correct += correct | |
# total_element += true_labels.nelement() | |
total_element += data["label"].nelement() | |
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels, correct, total_correct, total_element) | |
post_fix = { | |
"epoch": epoch, | |
"iter": i, | |
"avg_loss": avg_loss / (i + 1), | |
"avg_acc": total_correct / total_element * 100 if total_element != 0 else 0, | |
"loss": loss.item() | |
} | |
if i % self.log_freq == 0: | |
data_iter.write(str(post_fix)) | |
precisions = precision_score(tlabels, plabels, average="weighted", zero_division=0) | |
recalls = recall_score(tlabels, plabels, average="weighted") | |
f1_scores = f1_score(tlabels, plabels, average="weighted") | |
cmatrix = confusion_matrix(tlabels, plabels) | |
end_time = time.time() | |
final_msg = { | |
"epoch": f"EP{epoch}_{phase}", | |
"avg_loss": avg_loss / len(data_iter), | |
"total_acc": total_correct * 100.0 / total_element, | |
"precisions": precisions, | |
"recalls": recalls, | |
"f1_scores": f1_scores, | |
# "confusion_matrix": f"{cmatrix}", | |
# "true_labels": f"{tlabels}", | |
# "predicted_labels": f"{plabels}", | |
"time_taken_from_start": end_time - self.start_time | |
} | |
print(final_msg) | |
f.close() | |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1: | |
sys.stdout = f1 | |
final_msg = { | |
"epoch": f"EP{epoch}_{phase}", | |
"confusion_matrix": f"{cmatrix}", | |
"true_labels": f"{tlabels if epoch == 0 else ''}", | |
"predicted_labels": f"{plabels}", | |
"probabilities": f"{probabs}", | |
"time_taken_from_start": end_time - self.start_time | |
} | |
print(final_msg) | |
f1.close() | |
sys.stdout = sys.__stdout__ | |
sys.stdout = sys.__stdout__ | |
if phase == "test": | |
self.save_model = False | |
if self.avg_loss > (avg_loss / len(data_iter)): | |
self.save_model = True | |
self.avg_loss = (avg_loss / len(data_iter)) | |
def iteration_1(self, epoch_idx, data): | |
try: | |
data = {key: value.to(self.device) for key, value in data.items()} | |
logits = self.model(data['input_ids'], data['segment_label']) | |
# Ensure logits is a tensor, not a tuple | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(logits, data['labels']) | |
# Backpropagation and optimization | |
self.optim.zero_grad() | |
loss.backward() | |
self.optim.step() | |
if self.log_freq > 0 and epoch_idx % self.log_freq == 0: | |
print(f"Epoch {epoch_idx}: Loss = {loss.item()}") | |
return loss | |
except Exception as e: | |
print(f"Error during iteration: {e}") | |
raise | |
def save(self, epoch, file_path="output/bert_fine_tuned_trained.model"): | |
""" | |
Saving the current BERT model on file_path | |
:param epoch: current epoch number | |
:param file_path: model output path which gonna be file_path+"ep%d" % epoch | |
:return: final_output_path | |
""" | |
output_path = file_path + ".ep%d" % epoch | |
torch.save(self.model.cpu(), output_path) | |
self.model.to(self.device) | |
print("EP:%d Model Saved on:" % epoch, output_path) | |
return output_path | |
class BERTAttention: | |
def __init__(self, bert: BERT, vocab_obj, train_dataloader: DataLoader, workspace_name=None, code=None, finetune_task=None, with_cuda=True): | |
# available_gpus = list(range(torch.cuda.device_count())) | |
cuda_condition = torch.cuda.is_available() and with_cuda | |
self.device = torch.device("cuda:0" if cuda_condition else "cpu") | |
print(with_cuda, cuda_condition, " Device used = ", self.device) | |
self.bert = bert.to(self.device) | |
# if with_cuda and torch.cuda.device_count() > 1: | |
# print("Using %d GPUS for BERT" % torch.cuda.device_count()) | |
# self.bert = nn.DataParallel(self.bert, device_ids=available_gpus) | |
self.train_dataloader = train_dataloader | |
self.workspace_name = workspace_name | |
self.code = code | |
self.finetune_task = finetune_task | |
self.vocab_obj = vocab_obj | |
def getAttention(self): | |
# self.log_file = f"{self.workspace_name}/logs/{self.code}/log_attention.txt" | |
labels = ['PercentChange', 'NumeratorQuantity2', 'NumeratorQuantity1', 'DenominatorQuantity1', | |
'OptionalTask_1', 'EquationAnswer', 'NumeratorFactor', 'DenominatorFactor', | |
'OptionalTask_2', 'FirstRow1:1', 'FirstRow1:2', 'FirstRow2:1', 'FirstRow2:2', 'SecondRow', | |
'ThirdRow', 'FinalAnswer','FinalAnswerDirection'] | |
df_all = pd.DataFrame(0.0, index=labels, columns=labels) | |
# Setting the tqdm progress bar | |
data_iter = tqdm.tqdm(enumerate(self.train_dataloader), | |
desc="attention", | |
total=len(self.train_dataloader), | |
bar_format="{l_bar}{r_bar}") | |
count = 0 | |
for i, data in data_iter: | |
data = {key: value.to(self.device) for key, value in data.items()} | |
a = self.bert.forward(data["bert_input"], data["segment_label"]) | |
non_zero = np.sum(data["segment_label"].cpu().detach().numpy()) | |
# Last Transformer Layer | |
last_layer = self.bert.attention_values[-1].transpose(1,0,2,3) | |
# print(last_layer.shape) | |
head, d_model, s, s = last_layer.shape | |
for d in range(d_model): | |
seq_labels = self.vocab_obj.to_sentence(data["bert_input"].cpu().detach().numpy().tolist()[d])[1:non_zero-1] | |
# df_all = pd.DataFrame(0.0, index=seq_labels, columns=seq_labels) | |
indices_to_choose = defaultdict(int) | |
for k,s in enumerate(seq_labels): | |
if s in labels: | |
indices_to_choose[s] = k | |
indices_chosen = list(indices_to_choose.values()) | |
selected_seq_labels = [s for l,s in enumerate(seq_labels) if l in indices_chosen] | |
# print(len(seq_labels), len(selected_seq_labels)) | |
for h in range(head): | |
# fig, ax = plt.subplots(figsize=(12, 12)) | |
# seq_labels = self.vocab_obj.to_sentence(data["bert_input"].cpu().detach().numpy().tolist()[d])#[1:non_zero-1] | |
# seq_labels = self.vocab_obj.to_sentence(data["bert_input"].cpu().detach().numpy().tolist()[d])[1:non_zero-1] | |
# indices_to_choose = defaultdict(int) | |
# for k,s in enumerate(seq_labels): | |
# if s in labels: | |
# indices_to_choose[s] = k | |
# indices_chosen = list(indices_to_choose.values()) | |
# selected_seq_labels = [s for l,s in enumerate(seq_labels) if l in indices_chosen] | |
# print(f"Chosen index: {seq_labels, indices_to_choose, indices_chosen, selected_seq_labels}") | |
df_cm = pd.DataFrame(last_layer[h][d][indices_chosen,:][:,indices_chosen], index = selected_seq_labels, columns = selected_seq_labels) | |
df_all = df_all.add(df_cm, fill_value=0) | |
count += 1 | |
# df_cm = pd.DataFrame(last_layer[h][d][1:non_zero-1,:][:,1:non_zero-1], index=seq_labels, columns=seq_labels) | |
# df_all = df_all.add(df_cm, fill_value=0) | |
# df_all = df_all.reindex(index=seq_labels, columns=seq_labels) | |
# sns.heatmap(df_all, annot=False) | |
# plt.title("Attentions") #Probabilities | |
# plt.xlabel("Steps") | |
# plt.ylabel("Steps") | |
# plt.grid(True) | |
# plt.tick_params(axis='x', bottom=False, top=True, labelbottom=False, labeltop=True, labelrotation=90) | |
# plt.savefig(f"{self.workspace_name}/plots/{self.code}/{self.finetune_task}_attention_scores_over_[{h}]_head_n_data[{d}].png", bbox_inches='tight') | |
# plt.show() | |
# plt.close() | |
print(f"Count of total : {count, head * self.train_dataloader.dataset.len}") | |
df_all = df_all.div(count) # head * self.train_dataloader.dataset.len | |
df_all = df_all.reindex(index=labels, columns=labels) | |
sns.heatmap(df_all, annot=False) | |
plt.title("Attentions") #Probabilities | |
plt.xlabel("Steps") | |
plt.ylabel("Steps") | |
plt.grid(True) | |
plt.tick_params(axis='x', bottom=False, top=True, labelbottom=False, labeltop=True, labelrotation=90) | |
plt.savefig(f"{self.workspace_name}/plots/{self.code}/{self.finetune_task}_attention_scores.png", bbox_inches='tight') | |
plt.show() | |
plt.close() | |