Spaces:
Running
Running
changed num workers
Browse files- app.py +12 -2
- result.txt +6 -0
- src/test_saved_model.py +4 -2
- tets.py +0 -0
app.py
CHANGED
@@ -16,14 +16,24 @@ def process_file(file, model_name):
|
|
16 |
shutil.copyfile(file.name, saved_test_dataset)
|
17 |
# For demonstration purposes, we'll just return the content with the selected model name
|
18 |
subprocess.run(["python", "src/test_saved_model.py"])
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# List of models for the dropdown menu
|
22 |
models = ["Model A", "Model B", "Model C"]
|
23 |
|
24 |
# Create the Gradio interface
|
25 |
with gr.Blocks() as demo:
|
26 |
-
gr.Markdown("#
|
27 |
gr.Markdown("Upload a .txt file and select a model from the dropdown menu.")
|
28 |
|
29 |
with gr.Row():
|
|
|
16 |
shutil.copyfile(file.name, saved_test_dataset)
|
17 |
# For demonstration purposes, we'll just return the content with the selected model name
|
18 |
subprocess.run(["python", "src/test_saved_model.py"])
|
19 |
+
result = {}
|
20 |
+
with open("result.txt", 'r') as file:
|
21 |
+
for line in file:
|
22 |
+
key, value = line.strip().split(': ', 1)
|
23 |
+
# print(type(key))
|
24 |
+
if key=='epoch':
|
25 |
+
result[key]=value
|
26 |
+
else:
|
27 |
+
result[key]=float(value)
|
28 |
+
|
29 |
+
return f"Model: {model_name}\nResult:\n{result}"
|
30 |
|
31 |
# List of models for the dropdown menu
|
32 |
models = ["Model A", "Model B", "Model C"]
|
33 |
|
34 |
# Create the Gradio interface
|
35 |
with gr.Blocks() as demo:
|
36 |
+
gr.Markdown("# ASTRA")
|
37 |
gr.Markdown("Upload a .txt file and select a model from the dropdown menu.")
|
38 |
|
39 |
with gr.Row():
|
result.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch: EP0_test
|
2 |
+
accuracy: 12.545819442371167
|
3 |
+
avg_loss: 0.0
|
4 |
+
precisions: 0.9988672445640735
|
5 |
+
recalls: 0.8782073609659816
|
6 |
+
f1_scores: 0.9254850123297983
|
src/test_saved_model.py
CHANGED
@@ -148,7 +148,9 @@ class BERTFineTunedTrainer:
|
|
148 |
"recalls": recalls,
|
149 |
"f1_scores": f1_scores
|
150 |
}
|
151 |
-
|
|
|
|
|
152 |
print(final_msg)
|
153 |
|
154 |
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_acc=", total_correct * 100.0 / total_element)
|
@@ -217,7 +219,7 @@ if __name__ == "__main__":
|
|
217 |
print("Loading Test Dataset", args.test_dataset)
|
218 |
test_dataset = TokenizerDataset(args.test_dataset, args.test_label, vocab_obj, seq_len=args.seq_len, train=False)
|
219 |
print("Creating Dataloader")
|
220 |
-
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=
|
221 |
bert = torch.load(args.finetuned_bert_checkpoint, map_location="cpu")
|
222 |
|
223 |
if args.workspace_name == "ratio_proportion_change4":
|
|
|
148 |
"recalls": recalls,
|
149 |
"f1_scores": f1_scores
|
150 |
}
|
151 |
+
with open("result.txt", 'w') as file:
|
152 |
+
for key, value in final_msg.items():
|
153 |
+
file.write(f"{key}: {value}\n")
|
154 |
print(final_msg)
|
155 |
|
156 |
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_acc=", total_correct * 100.0 / total_element)
|
|
|
219 |
print("Loading Test Dataset", args.test_dataset)
|
220 |
test_dataset = TokenizerDataset(args.test_dataset, args.test_label, vocab_obj, seq_len=args.seq_len, train=False)
|
221 |
print("Creating Dataloader")
|
222 |
+
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=4)
|
223 |
bert = torch.load(args.finetuned_bert_checkpoint, map_location="cpu")
|
224 |
|
225 |
if args.workspace_name == "ratio_proportion_change4":
|
tets.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|