Spaces:
Sleeping
Sleeping
removed the uploading of data
Browse files- .gitignore +2 -0
- app.py +15 -14
- new_test_saved_finetuned_model.py +3 -1
- result.txt +1 -1
- test.txt +0 -0
.gitignore
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
train_info.txt
|
|
|
|
|
2 |
ratio_proportion_change3_2223/sch_largest_100-coded/logs/
|
|
|
1 |
train_info.txt
|
2 |
+
train.txt
|
3 |
+
train_label.txt
|
4 |
ratio_proportion_change3_2223/sch_largest_100-coded/logs/
|
app.py
CHANGED
@@ -10,18 +10,19 @@ from sklearn.metrics import roc_curve, auc
|
|
10 |
import pandas as pd
|
11 |
# Define the function to process the input file and model selection
|
12 |
|
13 |
-
def process_file(
|
14 |
# progress = gr.Progress(track_tqdm=True)
|
|
|
15 |
progress(0, desc="Starting the processing")
|
16 |
-
with open(file.name, 'r') as f:
|
17 |
-
|
18 |
-
saved_test_dataset = "train.txt"
|
19 |
-
saved_test_label = "train_label.txt"
|
20 |
-
saved_train_info="train_info.txt"
|
21 |
# Save the uploaded file content to a specified location
|
22 |
-
shutil.copyfile(file.name, saved_test_dataset)
|
23 |
-
shutil.copyfile(label.name, saved_test_label)
|
24 |
-
shutil.copyfile(info.name, saved_train_info)
|
25 |
|
26 |
|
27 |
# Load the test_info file and the graduation rate file
|
@@ -324,12 +325,12 @@ tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
|
|
324 |
gr.Markdown("<p class='description'>Upload a .txt file and select a model from the dropdown menu.</p>")
|
325 |
|
326 |
with gr.Row():
|
327 |
-
file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box")
|
328 |
-
label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")
|
329 |
|
330 |
-
info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
|
331 |
|
332 |
-
|
333 |
|
334 |
|
335 |
increment_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Schools Percentage", value=1)
|
@@ -340,7 +341,7 @@ tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
|
|
340 |
|
341 |
btn = gr.Button("Submit")
|
342 |
|
343 |
-
btn.click(fn=process_file, inputs=[
|
344 |
|
345 |
|
346 |
# Launch the app
|
|
|
10 |
import pandas as pd
|
11 |
# Define the function to process the input file and model selection
|
12 |
|
13 |
+
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
14 |
# progress = gr.Progress(track_tqdm=True)
|
15 |
+
|
16 |
progress(0, desc="Starting the processing")
|
17 |
+
# with open(file.name, 'r') as f:
|
18 |
+
# content = f.read()
|
19 |
+
# saved_test_dataset = "train.txt"
|
20 |
+
# saved_test_label = "train_label.txt"
|
21 |
+
# saved_train_info="train_info.txt"
|
22 |
# Save the uploaded file content to a specified location
|
23 |
+
# shutil.copyfile(file.name, saved_test_dataset)
|
24 |
+
# shutil.copyfile(label.name, saved_test_label)
|
25 |
+
# shutil.copyfile(info.name, saved_train_info)
|
26 |
|
27 |
|
28 |
# Load the test_info file and the graduation rate file
|
|
|
325 |
gr.Markdown("<p class='description'>Upload a .txt file and select a model from the dropdown menu.</p>")
|
326 |
|
327 |
with gr.Row():
|
328 |
+
# file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box")
|
329 |
+
# label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")
|
330 |
|
331 |
+
# info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
|
332 |
|
333 |
+
model_dropdown = gr.Dropdown(choices=models, label="Select Finetune Task", elem_classes="dropdown-menu")
|
334 |
|
335 |
|
336 |
increment_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Schools Percentage", value=1)
|
|
|
341 |
|
342 |
btn = gr.Button("Submit")
|
343 |
|
344 |
+
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,output_image])
|
345 |
|
346 |
|
347 |
# Launch the app
|
new_test_saved_finetuned_model.py
CHANGED
@@ -440,7 +440,9 @@ class BERTFineTuneCalibratedTrainer:
|
|
440 |
with open("result.txt", 'w') as file:
|
441 |
for key, value in final_msg.items():
|
442 |
file.write(f"{key}: {value}\n")
|
443 |
-
|
|
|
|
|
444 |
print(final_msg)
|
445 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
446 |
f.close()
|
|
|
440 |
with open("result.txt", 'w') as file:
|
441 |
for key, value in final_msg.items():
|
442 |
file.write(f"{key}: {value}\n")
|
443 |
+
with open("plabels.txt","w") as file:
|
444 |
+
file.write(plabels)
|
445 |
+
|
446 |
print(final_msg)
|
447 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
448 |
f.close()
|
result.txt
CHANGED
@@ -3,5 +3,5 @@ total_acc: 69.52861952861953
|
|
3 |
precisions: 0.7336375047795977
|
4 |
recalls: 0.6952861952861953
|
5 |
f1_scores: 0.6858177547541179
|
6 |
-
time_taken_from_start:
|
7 |
auc_score: 0.7738852057033876
|
|
|
3 |
precisions: 0.7336375047795977
|
4 |
recalls: 0.6952861952861953
|
5 |
f1_scores: 0.6858177547541179
|
6 |
+
time_taken_from_start: 16.031665802001953
|
7 |
auc_score: 0.7738852057033876
|
test.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|