Spaces:
Sleeping
Sleeping
internal changes
Browse files- app.py +503 -234
- result.txt +1 -1
app.py
CHANGED
@@ -8,6 +8,7 @@ import shutil
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from sklearn.metrics import roc_curve, auc
|
10 |
import pandas as pd
|
|
|
11 |
from sklearn.metrics import roc_auc_score
|
12 |
from matplotlib.figure import Figure
|
13 |
# Define the function to process the input file and model selection
|
@@ -157,7 +158,6 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
157 |
|
158 |
return opt1_done, opt2_done
|
159 |
|
160 |
-
# Read data from test_info.txt
|
161 |
# Read data from test_info.txt
|
162 |
with open(test_info_location, "r") as file:
|
163 |
data = file.readlines()
|
@@ -167,8 +167,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
167 |
|
168 |
# Initialize counters
|
169 |
task_counts = {
|
170 |
-
1: {"
|
171 |
-
2: {"
|
172 |
}
|
173 |
|
174 |
# Analyze rows
|
@@ -182,18 +182,18 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
182 |
|
183 |
if ideal_task == 0:
|
184 |
if opt1_done and not opt2_done:
|
185 |
-
task_counts[1]["
|
186 |
elif not opt1_done and opt2_done:
|
187 |
-
task_counts[1]["
|
188 |
elif opt1_done and opt2_done:
|
189 |
task_counts[1]["both"] += 1
|
190 |
else:
|
191 |
task_counts[1]["none"] +=1
|
192 |
elif ideal_task == 1:
|
193 |
if opt1_done and not opt2_done:
|
194 |
-
task_counts[2]["
|
195 |
elif not opt1_done and opt2_done:
|
196 |
-
task_counts[2]["
|
197 |
elif opt1_done and opt2_done:
|
198 |
task_counts[2]["both"] += 1
|
199 |
else:
|
@@ -205,43 +205,112 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
205 |
|
206 |
# for ideal_task, counts in task_counts.items():
|
207 |
# output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
|
208 |
-
# output_summary += f" Only OptionalTask_1 done: {counts['
|
209 |
-
# output_summary += f" Only OptionalTask_2 done: {counts['
|
210 |
# output_summary += f" Both done: {counts['both']}\n"
|
211 |
|
|
|
|
|
|
|
212 |
# Generate pie chart for Task 1
|
213 |
task1_labels = list(task_counts[1].keys())
|
214 |
task1_values = list(task_counts[1].values())
|
215 |
|
216 |
-
fig_task1 = Figure()
|
217 |
-
ax1 = fig_task1.add_subplot(1, 1, 1)
|
218 |
-
ax1.pie(task1_values, labels=task1_labels, autopct='%1.1f%%', startangle=90)
|
219 |
-
ax1.set_title('Ideal Task 1 Distribution')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
# Generate pie chart for Task 2
|
222 |
task2_labels = list(task_counts[2].keys())
|
223 |
task2_values = list(task_counts[2].values())
|
224 |
|
225 |
-
fig_task2 = Figure(
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
# print(output_summary)
|
231 |
|
232 |
progress(0.2, desc="analysis done!! Executing models")
|
233 |
print("finetuned task: ",finetune_task)
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
progress(0.6,desc="Model execution completed")
|
246 |
result = {}
|
247 |
with open("result.txt", 'r') as file:
|
@@ -262,18 +331,70 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
262 |
|
263 |
|
264 |
# Create a matplotlib figure
|
265 |
-
fig = Figure()
|
266 |
-
ax = fig.add_subplot(1, 1, 1)
|
267 |
-
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
268 |
-
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
|
269 |
-
ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')
|
270 |
-
ax.legend(loc="lower right")
|
271 |
-
ax.grid()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
# Save plot to a file
|
274 |
-
plot_path = "plot.png"
|
275 |
-
fig.savefig(plot_path)
|
276 |
-
plt.close(fig)
|
277 |
|
278 |
|
279 |
|
@@ -283,19 +404,20 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
283 |
text_output = f"Model: {model_name}\nResult:\n{result}"
|
284 |
# Prepare text output with HTML formatting
|
285 |
text_output = f"""
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
Total
|
291 |
-
Total number of instances having Schools with
|
292 |
-
|
293 |
-
|
294 |
-
ROC score of
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
299 |
"""
|
300 |
return text_output,fig,fig_task1,fig_task2
|
301 |
|
@@ -304,27 +426,30 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
304 |
# models = ["ASTRA-FT-HGR", "ASTRA-FT-LGR", "ASTRA-FT-FULL"]
|
305 |
models = ["ASTRA-FT-HGR", "ASTRA-FT-FULL"]
|
306 |
content = """
|
307 |
-
<h1 style="color:
|
|
|
308 |
|
309 |
-
<h3 style="color: white;">
|
310 |
-
<a href="https://drive.google.com/file/d/1lbEpg8Se1ugTtkjreD8eXIg7qrplhWan/view" style="color:
|
311 |
<a href="https://github.com/Syudu41/ASTRA---Gates-Project" style="color: #1E90FF; text-decoration: none;">GitHub</a> |
|
312 |
-
<a href="
|
313 |
</h3>
|
314 |
|
315 |
<p style="color: white;">Welcome to a demo of ASTRA. ASTRA is a collaborative research project between researchers at the
|
316 |
-
<a href="https://
|
317 |
<a href="https://www.carnegielearning.com" style="color: #1E90FF; text-decoration: none;">Carnegie Learning</a>
|
318 |
to utilize AI to improve our understanding of math learning strategies.</p>
|
319 |
|
320 |
-
<p style="color: white;">This demo has been developed with a pre-trained model (based on an architecture similar to BERT)
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
|
325 |
-
<p style="color: white;">
|
326 |
-
|
327 |
-
|
|
|
|
|
328 |
|
329 |
<p style="color: white;">To use the demo, please follow these steps:</p>
|
330 |
|
@@ -335,203 +460,327 @@ lead to correct vs. incorrect solutions.</p>
|
|
335 |
<li style="color: white;">ASTRA-FT-Full: Fine-tuned with a small sample of data from a mix of schools that have high/low graduation rates.</li>
|
336 |
</ul>
|
337 |
</li>
|
338 |
-
<li style="color: white;">Select a percentage of schools to analyze (selecting a large percentage may take a long time)
|
339 |
-
|
|
|
340 |
<ul>
|
341 |
-
<li style="color: white;">The
|
342 |
-
|
|
|
|
|
|
|
|
|
343 |
</ul>
|
344 |
</li>
|
345 |
</ol>
|
346 |
"""
|
347 |
# CSS styling for white text
|
348 |
# Create the Gradio interface
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
#title {
|
369 |
-
color: white!important;
|
370 |
-
font-size: 2.3em;
|
371 |
-
font-weight: bold;
|
372 |
-
text-align: center!important;
|
373 |
-
margin-bottom: 20px;
|
374 |
-
}
|
375 |
-
.description {
|
376 |
-
text-align: center;
|
377 |
-
font-size: 1.1em;
|
378 |
-
color: #bfbfbf;
|
379 |
-
margin-bottom: 30px;
|
380 |
-
}
|
381 |
-
.file-box {
|
382 |
-
max-width: 180px;
|
383 |
-
padding: 5px;
|
384 |
-
background-color: #444!important;
|
385 |
-
border: 1px solid #666!important;
|
386 |
-
border-radius: 6px;
|
387 |
-
height: 80px!important;;
|
388 |
-
margin: 0 auto!important;;
|
389 |
-
text-align: center;
|
390 |
-
color: transparent;
|
391 |
-
}
|
392 |
-
.file-box span {
|
393 |
-
color: #f5f5f5!important;
|
394 |
-
font-size: 1em;
|
395 |
-
line-height: 45px; /* Vertically center text */
|
396 |
-
}
|
397 |
-
.dropdown-menu {
|
398 |
-
max-width: 220px;
|
399 |
-
margin: 0 auto!important;
|
400 |
-
background-color: #444!important;
|
401 |
-
color:#444!important;
|
402 |
-
border-radius: 6px;
|
403 |
-
padding: 8px;
|
404 |
-
font-size: 1.1em;
|
405 |
-
border: 1px solid #666;
|
406 |
-
}
|
407 |
-
.button {
|
408 |
-
background-color: #4CAF50!important;
|
409 |
-
color: white!important;
|
410 |
-
font-size: 1.1em;
|
411 |
-
padding: 10px 25px;
|
412 |
-
border-radius: 6px;
|
413 |
-
cursor: pointer;
|
414 |
-
transition: background-color 0.2s ease-in-out;
|
415 |
-
}
|
416 |
-
.button:hover {
|
417 |
-
background-color: #45a049!important;
|
418 |
-
}
|
419 |
-
.output-text {
|
420 |
-
background-color: #333!important;
|
421 |
-
padding: 12px;
|
422 |
-
border-radius: 8px;
|
423 |
-
border: 1px solid #666;
|
424 |
-
font-size: 1.1em;
|
425 |
-
}
|
426 |
-
.footer {
|
427 |
-
text-align: center;
|
428 |
-
margin-top: 50px;
|
429 |
-
font-size: 0.9em;
|
430 |
-
color: #b0b0b0;
|
431 |
-
}
|
432 |
-
.svelte-12ioyct .wrap {
|
433 |
-
display: none !important;
|
434 |
}
|
435 |
-
|
436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
}
|
438 |
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
background: #1f2937!important;
|
448 |
-
overflow-y: hidden;
|
449 |
}
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
background: #1f2937!important;
|
459 |
-
width: 100%;
|
460 |
-
line-height: var(--line-sm);
|
461 |
}
|
462 |
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
465 |
}
|
466 |
-
|
467 |
-
|
|
|
|
|
|
|
|
|
468 |
}
|
469 |
-
|
470 |
-
|
|
|
|
|
471 |
}
|
472 |
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
color:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
}
|
478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
display: flex;
|
480 |
-
flex-direction: column;
|
481 |
-
justify-content: center;
|
482 |
align-items: center;
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
text-align: center;
|
489 |
-
|
|
|
|
|
|
|
490 |
}
|
491 |
-
|
492 |
-
|
493 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
}
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
}
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
border:
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
color: #
|
513 |
-
|
514 |
-
|
515 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
}
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
}
|
521 |
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
background: #aca7b2;
|
526 |
}
|
527 |
|
528 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
|
530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
}
|
532 |
-
|
|
|
|
|
|
|
533 |
|
534 |
-
gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title")
|
535 |
gr.Markdown(content)
|
536 |
|
537 |
with gr.Row():
|
@@ -539,24 +788,44 @@ tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
|
|
539 |
# label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")
|
540 |
|
541 |
# info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
|
543 |
-
|
|
|
544 |
|
545 |
-
|
546 |
-
increment_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Schools Percentage", value=1)
|
547 |
gr.Markdown("<p class='description'>Dashboard</p>")
|
|
|
548 |
with gr.Row():
|
549 |
output_text = gr.Textbox(label="")
|
550 |
# output_image = gr.Image(label="ROC")
|
551 |
-
plot_output = gr.Plot(label="roc")
|
552 |
with gr.Row():
|
553 |
-
|
554 |
-
|
|
|
|
|
|
|
555 |
# output_summary = gr.Textbox(label="Summary")
|
556 |
|
557 |
-
|
558 |
|
559 |
-
btn.click(
|
|
|
|
|
|
|
|
|
560 |
|
561 |
|
562 |
# Launch the app
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from sklearn.metrics import roc_curve, auc
|
10 |
import pandas as pd
|
11 |
+
import plotly.graph_objects as go
|
12 |
from sklearn.metrics import roc_auc_score
|
13 |
from matplotlib.figure import Figure
|
14 |
# Define the function to process the input file and model selection
|
|
|
158 |
|
159 |
return opt1_done, opt2_done
|
160 |
|
|
|
161 |
# Read data from test_info.txt
|
162 |
with open(test_info_location, "r") as file:
|
163 |
data = file.readlines()
|
|
|
167 |
|
168 |
# Initialize counters
|
169 |
task_counts = {
|
170 |
+
1: {"ER": 0, "ME": 0, "both": 0,"none":0},
|
171 |
+
2: {"ER": 0, "ME": 0, "both": 0,"none":0}
|
172 |
}
|
173 |
|
174 |
# Analyze rows
|
|
|
182 |
|
183 |
if ideal_task == 0:
|
184 |
if opt1_done and not opt2_done:
|
185 |
+
task_counts[1]["ER"] += 1
|
186 |
elif not opt1_done and opt2_done:
|
187 |
+
task_counts[1]["ME"] += 1
|
188 |
elif opt1_done and opt2_done:
|
189 |
task_counts[1]["both"] += 1
|
190 |
else:
|
191 |
task_counts[1]["none"] +=1
|
192 |
elif ideal_task == 1:
|
193 |
if opt1_done and not opt2_done:
|
194 |
+
task_counts[2]["ER"] += 1
|
195 |
elif not opt1_done and opt2_done:
|
196 |
+
task_counts[2]["ME"] += 1
|
197 |
elif opt1_done and opt2_done:
|
198 |
task_counts[2]["both"] += 1
|
199 |
else:
|
|
|
205 |
|
206 |
# for ideal_task, counts in task_counts.items():
|
207 |
# output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
|
208 |
+
# output_summary += f" Only OptionalTask_1 done: {counts['ER']}\n"
|
209 |
+
# output_summary += f" Only OptionalTask_2 done: {counts['ME']}\n"
|
210 |
# output_summary += f" Both done: {counts['both']}\n"
|
211 |
|
212 |
+
# colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
|
213 |
+
colors = ["#FF6F61", "#6B5B95", "#88B04B", "#F7CAC9"]
|
214 |
+
|
215 |
# Generate pie chart for Task 1
|
216 |
task1_labels = list(task_counts[1].keys())
|
217 |
task1_values = list(task_counts[1].values())
|
218 |
|
219 |
+
# fig_task1 = Figure()
|
220 |
+
# ax1 = fig_task1.add_subplot(1, 1, 1)
|
221 |
+
# ax1.pie(task1_values, labels=task1_labels, autopct='%1.1f%%', startangle=90)
|
222 |
+
# ax1.set_title('Ideal Task 1 Distribution')
|
223 |
+
|
224 |
+
fig_task1 = go.Figure(data=[go.Pie(
|
225 |
+
labels=task1_labels,
|
226 |
+
values=task1_values,
|
227 |
+
textinfo='percent+label',
|
228 |
+
textposition='auto',
|
229 |
+
marker=dict(colors=colors),
|
230 |
+
sort=False
|
231 |
+
|
232 |
+
)])
|
233 |
+
|
234 |
+
fig_task1.update_layout(
|
235 |
+
title='Problem Type: ER',
|
236 |
+
title_x=0.5,
|
237 |
+
font=dict(
|
238 |
+
family="sans-serif",
|
239 |
+
size=12,
|
240 |
+
color="black"
|
241 |
+
),
|
242 |
+
)
|
243 |
+
|
244 |
+
fig_task1.update_layout(
|
245 |
+
legend=dict(
|
246 |
+
font=dict(
|
247 |
+
family="sans-serif",
|
248 |
+
size=12,
|
249 |
+
color="black"
|
250 |
+
),
|
251 |
+
)
|
252 |
+
)
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
# fig.show()
|
257 |
|
258 |
# Generate pie chart for Task 2
|
259 |
task2_labels = list(task_counts[2].keys())
|
260 |
task2_values = list(task_counts[2].values())
|
261 |
|
262 |
+
fig_task2 = go.Figure(data=[go.Pie(
|
263 |
+
labels=task2_labels,
|
264 |
+
values=task2_values,
|
265 |
+
textinfo='percent+label',
|
266 |
+
textposition='auto',
|
267 |
+
marker=dict(colors=colors),
|
268 |
+
sort=False
|
269 |
+
# pull=[0, 0.2, 0, 0] # for pulling part of pie chart out (depends on position)
|
270 |
+
|
271 |
+
)])
|
272 |
+
|
273 |
+
fig_task2.update_layout(
|
274 |
+
title='Problem Type: ME',
|
275 |
+
title_x=0.5,
|
276 |
+
font=dict(
|
277 |
+
family="sans-serif",
|
278 |
+
size=12,
|
279 |
+
color="black"
|
280 |
+
),
|
281 |
+
)
|
282 |
+
|
283 |
+
fig_task2.update_layout(
|
284 |
+
legend=dict(
|
285 |
+
font=dict(
|
286 |
+
family="sans-serif",
|
287 |
+
size=12,
|
288 |
+
color="black"
|
289 |
+
),
|
290 |
+
)
|
291 |
+
)
|
292 |
+
|
293 |
+
|
294 |
+
# fig_task2 = Figure()
|
295 |
+
# ax2 = fig_task2.add_subplot(1, 1, 1)
|
296 |
+
# ax2.pie(task2_values, labels=task2_labels, autopct='%1.1f%%', startangle=90)
|
297 |
+
# ax2.set_title('Ideal Task 2 Distribution')
|
298 |
|
299 |
# print(output_summary)
|
300 |
|
301 |
progress(0.2, desc="analysis done!! Executing models")
|
302 |
print("finetuned task: ",finetune_task)
|
303 |
+
subprocess.run([
|
304 |
+
"python", "new_test_saved_finetuned_model.py",
|
305 |
+
"-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
|
306 |
+
"-finetune_task", finetune_task,
|
307 |
+
"-test_dataset_path","../../../../selected_rows.txt",
|
308 |
+
# "-test_label_path","../../../../train_label.txt",
|
309 |
+
"-finetuned_bert_classifier_checkpoint",
|
310 |
+
"ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
|
311 |
+
"-e",str(1),
|
312 |
+
"-b",str(1000)
|
313 |
+
])
|
314 |
progress(0.6,desc="Model execution completed")
|
315 |
result = {}
|
316 |
with open("result.txt", 'r') as file:
|
|
|
331 |
|
332 |
|
333 |
# Create a matplotlib figure
|
334 |
+
# fig = Figure()
|
335 |
+
# ax = fig.add_subplot(1, 1, 1)
|
336 |
+
# ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
337 |
+
# ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
|
338 |
+
# ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')
|
339 |
+
# ax.legend(loc="lower right")
|
340 |
+
# ax.grid()
|
341 |
+
|
342 |
+
fig = go.Figure()
|
343 |
+
# Create and style traces
|
344 |
+
fig.add_trace(go.Line(x = list(fpr), y = list(tpr), name=f'ROC curve (area = {roc_auc:.2f})',
|
345 |
+
line=dict(color='royalblue', width=3,
|
346 |
+
) # dash options include 'dash', 'dot', and 'dashdot'
|
347 |
+
))
|
348 |
+
fig.add_trace(go.Line(x = [0,1], y = [0,1], showlegend = False,
|
349 |
+
line=dict(color='firebrick', width=2,
|
350 |
+
dash='dash',) # dash options include 'dash', 'dot', and 'dashdot'
|
351 |
+
))
|
352 |
+
|
353 |
+
# Edit the layout
|
354 |
+
fig.update_layout(
|
355 |
+
showlegend = True,
|
356 |
+
title_x=0.5,
|
357 |
+
title=dict(
|
358 |
+
text='Receiver Operating Curve (ROC)'
|
359 |
+
),
|
360 |
+
xaxis=dict(
|
361 |
+
title=dict(
|
362 |
+
text='False Positive Rate'
|
363 |
+
)
|
364 |
+
),
|
365 |
+
yaxis=dict(
|
366 |
+
title=dict(
|
367 |
+
text='False Negative Rate'
|
368 |
+
)
|
369 |
+
),
|
370 |
+
font=dict(
|
371 |
+
family="sans-serif",
|
372 |
+
color="black"
|
373 |
+
),
|
374 |
+
|
375 |
+
)
|
376 |
+
fig.update_layout(
|
377 |
+
legend=dict(
|
378 |
+
x=0.75,
|
379 |
+
y=0,
|
380 |
+
traceorder="normal",
|
381 |
+
font=dict(
|
382 |
+
family="sans-serif",
|
383 |
+
size=12,
|
384 |
+
color="black"
|
385 |
+
),
|
386 |
+
)
|
387 |
+
)
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
|
394 |
# Save plot to a file
|
395 |
+
# plot_path = "plot.png"
|
396 |
+
# fig.savefig(plot_path)
|
397 |
+
# plt.close(fig)
|
398 |
|
399 |
|
400 |
|
|
|
404 |
text_output = f"Model: {model_name}\nResult:\n{result}"
|
405 |
# Prepare text output with HTML formatting
|
406 |
text_output = f"""
|
407 |
+
---------------------------
|
408 |
+
Model: {model_name}
|
409 |
+
---------------------------\n
|
410 |
+
Time Taken: {result['time_taken_from_start']:.2f} seconds
|
411 |
+
Total Schools in test: {len(unique_schools):.4f}
|
412 |
+
Total number of instances having Schools with HGR : {len(high_sample):.4f}
|
413 |
+
Total number of instances having Schools with LGR: {len(low_sample):.4f}
|
414 |
+
|
415 |
+
ROC score of HGR: {high_roc_auc:.4f}
|
416 |
+
ROC score of LGR: {low_roc_auc:.4f}
|
417 |
+
|
418 |
+
|
419 |
+
ROC-AUC for problems of type ER: {opt_task1_roc_auc:.4f}
|
420 |
+
ROC-AUC for problems of type ME: {opt_task2_roc_auc:.4f}
|
421 |
"""
|
422 |
return text_output,fig,fig_task1,fig_task2
|
423 |
|
|
|
426 |
# models = ["ASTRA-FT-HGR", "ASTRA-FT-LGR", "ASTRA-FT-FULL"]
|
427 |
models = ["ASTRA-FT-HGR", "ASTRA-FT-FULL"]
|
428 |
content = """
|
429 |
+
<h1 style="color: black;">A S T R A</h1>
|
430 |
+
<h2 style="color: black;">An AI Model for Analyzing Math Strategies</h2>
|
431 |
|
432 |
+
<h3 style="color: white; text-align: center">
|
433 |
+
<a href="https://drive.google.com/file/d/1lbEpg8Se1ugTtkjreD8eXIg7qrplhWan/view" style="color: gr.themes.colors.red; text-decoration: none;">Link To Paper</a> |
|
434 |
<a href="https://github.com/Syudu41/ASTRA---Gates-Project" style="color: #1E90FF; text-decoration: none;">GitHub</a> |
|
435 |
+
<a href="https://sites.google.com/view/astra-research/home" style="color: #1E90FF; text-decoration: none;">Project Page</a>
|
436 |
</h3>
|
437 |
|
438 |
<p style="color: white;">Welcome to a demo of ASTRA. ASTRA is a collaborative research project between researchers at the
|
439 |
+
<a href="https://sites.google.com/site/dvngopal/" style="color: #1E90FF; text-decoration: none;">University of Memphis</a> and
|
440 |
<a href="https://www.carnegielearning.com" style="color: #1E90FF; text-decoration: none;">Carnegie Learning</a>
|
441 |
to utilize AI to improve our understanding of math learning strategies.</p>
|
442 |
|
443 |
+
<p style="color: white;">This demo has been developed with a pre-trained model (based on an architecture similar to BERT ) that learns math strategies using data
|
444 |
+
collected from hundreds of schools in the U.S. who have used Carnegie Learning’s MATHia (formerly known as Cognitive Tutor), the flagship Intelligent Tutor that is part of a core, blended math curriculum.
|
445 |
+
For this demo, we have used data from a specific domain (teaching ratio and proportions) within 7th grade math. The fine-tuning based on the pre-trained model learns to predict which strategies lead to correct vs incorrect solutions.
|
446 |
+
</p>
|
447 |
|
448 |
+
<p style="color: white;">In this math domain, students were given word problems related to ratio and proportions. Further, the students
|
449 |
+
were given a choice of optional tasks to work on in parallel to the main problem to demonstrate their thinking (metacognition).
|
450 |
+
The optional tasks are designed based on solving problems using Equivalent Ratios (ER) and solving using Means and Extremes/cross-multiplication (ME).
|
451 |
+
When the equivalent ratios are easy to compute (integral values), ER is much more efficient compared to ME and switching between the tasks appropriately demonstrates cognitive flexibility.
|
452 |
+
</p>
|
453 |
|
454 |
<p style="color: white;">To use the demo, please follow these steps:</p>
|
455 |
|
|
|
460 |
<li style="color: white;">ASTRA-FT-Full: Fine-tuned with a small sample of data from a mix of schools that have high/low graduation rates.</li>
|
461 |
</ul>
|
462 |
</li>
|
463 |
+
<li style="color: white;">Select a percentage of schools to analyze (selecting a large percentage may take a long time). Note that the selected percentage is applied to both High Graduation Rate (HGR) schools and Low Graduation Rate (LGR schools).
|
464 |
+
</li>
|
465 |
+
<li style="color: white;">The results from the fine-tuned model are displayed in the dashboard:
|
466 |
<ul>
|
467 |
+
<li style="color: white;">The model accuracy is computed using the ROC-AUC metric.
|
468 |
+
</li>
|
469 |
+
<li style="color: white;">The results are shown for HGR, LGR schools and for different problem types (ER/ME).
|
470 |
+
</li>
|
471 |
+
<li style="color: white;">The distribution over how students utilized the optional tasks (whether they utilized ER/ME, used both of them or none of them) is shown for each problem type.
|
472 |
+
</li>
|
473 |
</ul>
|
474 |
</li>
|
475 |
</ol>
|
476 |
"""
|
477 |
# CSS styling for white text
|
478 |
# Create the Gradio interface
|
479 |
+
available_themes = {
|
480 |
+
"default": gr.themes.Default(),
|
481 |
+
"soft": gr.themes.Soft(),
|
482 |
+
"monochrome": gr.themes.Monochrome(),
|
483 |
+
"glass": gr.themes.Glass(),
|
484 |
+
"base": gr.themes.Base(),
|
485 |
+
}
|
486 |
|
487 |
+
# Comprehensive CSS for all HTML elements
|
488 |
+
custom_css = '''
|
489 |
+
/* Import Fira Sans font */
|
490 |
+
@import url('https://fonts.googleapis.com/css2?family=Fira+Sans:wght@400;500;600;700&family=Inter:wght@400;500;600;700&display=swap');
|
491 |
+
@import url('https://fonts.googleapis.com/css2?family=Libre+Caslon+Text:ital,wght@0,400;0,700;1,400&family=Spectral+SC:wght@600&display=swap');
|
492 |
+
/* Container modifications for centering */
|
493 |
+
.gradio-container {
|
494 |
+
color: var(--block-label-text-color) !important;
|
495 |
+
max-width: 1000px !important;
|
496 |
+
margin: 0 auto !important;
|
497 |
+
padding: 2rem !important;
|
498 |
+
font-family: Arial, sans-serif !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
}
|
500 |
+
|
501 |
+
/* Main title (ASTRA) */
|
502 |
+
#title {
|
503 |
+
text-align: center !important;
|
504 |
+
margin: 1rem auto !important; /* Reduced margin */
|
505 |
+
font-size: 2.5em !important;
|
506 |
+
font-weight: 600 !important;
|
507 |
+
font-family: "Spectral SC", 'Fira Sans', sans-serif !important;
|
508 |
+
padding-bottom: 0 !important; /* Remove bottom padding */
|
509 |
}
|
510 |
|
511 |
+
/* Subtitle (An AI Model...) */
|
512 |
+
h1 {
|
513 |
+
text-align: center !important;
|
514 |
+
font-size: 30pt !important;
|
515 |
+
font-weight: 600 !important;
|
516 |
+
font-family: "Spectral SC", 'Fira Sans', sans-serif !important;
|
517 |
+
margin-top: 0.5em !important; /* Reduced top margin */
|
518 |
+
margin-bottom: 0.3em !important;
|
|
|
|
|
519 |
}
|
520 |
|
521 |
+
h2 {
|
522 |
+
text-align: center !important;
|
523 |
+
font-size: 22pt !important;
|
524 |
+
font-weight: 600 !important;
|
525 |
+
font-family: "Spectral SC",'Fira Sans', sans-serif !important;
|
526 |
+
margin-top: 0.2em !important; /* Reduced top margin */
|
527 |
+
margin-bottom: 0.3em !important;
|
|
|
|
|
|
|
528 |
}
|
529 |
|
530 |
+
/* Links container styling */
|
531 |
+
.links-container {
|
532 |
+
text-align: center !important;
|
533 |
+
margin: 1em auto !important;
|
534 |
+
font-family: 'Inter' ,'Fira Sans', sans-serif !important;
|
535 |
}
|
536 |
+
|
537 |
+
/* Links */
|
538 |
+
a {
|
539 |
+
color: #2563eb !important;
|
540 |
+
text-decoration: none !important;
|
541 |
+
font-family:'Inter' , 'Fira Sans', sans-serif !important;
|
542 |
}
|
543 |
+
|
544 |
+
a:hover {
|
545 |
+
text-decoration: underline !important;
|
546 |
+
opacity: 0.8;
|
547 |
}
|
548 |
|
549 |
+
/* Regular text */
|
550 |
+
p, li, .description, .markdown-text {
|
551 |
+
font-family: 'Inter', Arial, sans-serif !important;
|
552 |
+
color: black !important;
|
553 |
+
font-size: 11pt;
|
554 |
+
line-height: 1.6;
|
555 |
+
font-weight: 500 !important;
|
556 |
+
color: var(--block-label-text-color) !important;
|
557 |
+
}
|
558 |
+
|
559 |
+
/* Other headings */
|
560 |
+
h3, h4, h5 {
|
561 |
+
font-family: 'Fira Sans', sans-serif !important;
|
562 |
+
color: var(--block-label-text-color) !important;
|
563 |
+
margin-top: 1.5em;
|
564 |
+
margin-bottom: 0.75em;
|
565 |
+
}
|
566 |
+
|
567 |
+
|
568 |
+
h3 { font-size: 1.5em; font-weight: 600; }
|
569 |
+
h4 { font-size: 1.25em; font-weight: 500; }
|
570 |
+
h5 { font-size: 1.1em; font-weight: 500; }
|
571 |
+
|
572 |
+
/* Form elements */
|
573 |
+
.select-wrap select, .wrap select,
|
574 |
+
input, textarea {
|
575 |
+
font-family: 'Inter' ,Arial, sans-serif !important;
|
576 |
+
color: var(--block-label-text-color) !important;
|
577 |
+
}
|
578 |
+
|
579 |
+
/* Lists */
|
580 |
+
ul, ol {
|
581 |
+
margin-left: 0 !important;
|
582 |
+
margin-bottom: 1.25em;
|
583 |
+
padding-left: 2em;
|
584 |
+
}
|
585 |
+
|
586 |
+
li {
|
587 |
+
margin-bottom: 0.75em;
|
588 |
}
|
589 |
+
|
590 |
+
/* Form container */
|
591 |
+
.form-container {
|
592 |
+
max-width: 1000px !important;
|
593 |
+
margin: 0 auto !important;
|
594 |
+
padding: 1rem !important;
|
595 |
+
}
|
596 |
+
|
597 |
+
/* Dashboard */
|
598 |
+
.dashboard {
|
599 |
+
margin-top: 2rem !important;
|
600 |
+
padding: 1rem !important;
|
601 |
+
border-radius: 8px !important;
|
602 |
+
}
|
603 |
+
|
604 |
+
/* Slider styling */
|
605 |
+
.gradio-slider-row {
|
606 |
display: flex;
|
|
|
|
|
607 |
align-items: center;
|
608 |
+
justify-content: space-between;
|
609 |
+
margin: 1.5em 0;
|
610 |
+
max-width: 100% !important;
|
611 |
+
}
|
612 |
+
|
613 |
+
.gradio-slider {
|
614 |
+
flex-grow: 1;
|
615 |
+
margin-right: 15px;
|
616 |
+
}
|
617 |
+
|
618 |
+
.slider-percentage {
|
619 |
+
font-family: 'Inter', Arial, sans-serif !important;
|
620 |
+
flex-shrink: 0;
|
621 |
+
min-width: 60px;
|
622 |
+
font-size: 1em;
|
623 |
+
font-weight: bold;
|
624 |
text-align: center;
|
625 |
+
background-color: #f0f8ff;
|
626 |
+
border: 1px solid #004080;
|
627 |
+
border-radius: 5px;
|
628 |
+
padding: 5px 10px;
|
629 |
}
|
630 |
+
|
631 |
+
.progress-bar-wrap.progress-bar-wrap.progress-bar-wrap
|
632 |
+
{
|
633 |
+
border-radius: var(--input-radius);
|
634 |
+
height: 1.25rem;
|
635 |
+
margin-top: 1rem;
|
636 |
+
overflow: hidden;
|
637 |
+
width: 70%;
|
638 |
+
font-family: 'Inter', Arial, sans-serif !important;
|
639 |
}
|
640 |
+
|
641 |
+
/* Add these new styles after your existing CSS */
|
642 |
+
|
643 |
+
/* Card-like appearance for the dashboard */
|
644 |
+
.dashboard {
|
645 |
+
background: #ffffff !important;
|
646 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06) !important;
|
647 |
+
border-radius: 12px !important;
|
648 |
+
padding: 2rem !important;
|
649 |
+
margin-top: 2.5rem !important;
|
650 |
}
|
651 |
+
|
652 |
+
/* Enhance ROC graph container */
|
653 |
+
#roc {
|
654 |
+
background: #ffffff !important;
|
655 |
+
padding: 1.5rem !important;
|
656 |
+
border-radius: 8px !important;
|
657 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
658 |
+
margin: 1.5rem 0 !important;
|
659 |
+
}
|
660 |
+
|
661 |
+
/* Style the dropdown select */
|
662 |
+
select {
|
663 |
+
background-color: #ffffff !important;
|
664 |
+
border: 1px solid #e2e8f0 !important;
|
665 |
+
border-radius: 8px !important;
|
666 |
+
padding: 0.5rem 1rem !important;
|
667 |
+
transition: all 0.2s ease-in-out !important;
|
668 |
+
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05) !important;
|
669 |
+
}
|
670 |
+
|
671 |
+
select:hover {
|
672 |
+
border-color: #cbd5e1 !important;
|
673 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
|
674 |
+
}
|
675 |
+
|
676 |
+
/* Enhance slider appearance */
|
677 |
+
.progress-bar-wrap {
|
678 |
+
background: #f8fafc !important;
|
679 |
+
border: 1px solid #e2e8f0 !important;
|
680 |
+
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
681 |
+
}
|
682 |
+
|
683 |
+
/* Style metrics in dashboard */
|
684 |
+
.dashboard p {
|
685 |
+
padding: 0.5rem 0 !important;
|
686 |
+
border-bottom: 1px solid #f1f5f9 !important;
|
687 |
+
}
|
688 |
+
|
689 |
+
/* Add spacing between sections */
|
690 |
+
.dashboard > div {
|
691 |
+
margin-bottom: 1.5rem !important;
|
692 |
+
}
|
693 |
+
|
694 |
+
/* Style the ROC curve title */
|
695 |
+
.dashboard h4 {
|
696 |
+
color: #1e293b !important;
|
697 |
+
font-weight: 600 !important;
|
698 |
+
margin-bottom: 1rem !important;
|
699 |
+
padding-bottom: 0.5rem !important;
|
700 |
+
border-bottom: 2px solid #e2e8f0 !important;
|
701 |
}
|
702 |
+
|
703 |
+
/* Enhance link appearances */
|
704 |
+
a {
|
705 |
+
position: relative !important;
|
706 |
+
padding-bottom: 2px !important;
|
707 |
+
transition: all 0.2s ease-in-out !important;
|
708 |
+
}
|
709 |
+
|
710 |
+
a:after {
|
711 |
+
content: '' !important;
|
712 |
+
position: absolute !important;
|
713 |
+
width: 0 !important;
|
714 |
+
height: 1px !important;
|
715 |
+
bottom: 0 !important;
|
716 |
+
left: 0 !important;
|
717 |
+
background-color: #2563eb !important;
|
718 |
+
transition: width 0.3s ease-in-out !important;
|
719 |
+
}
|
720 |
+
|
721 |
+
a:hover:after {
|
722 |
+
width: 100% !important;
|
723 |
+
}
|
724 |
+
|
725 |
+
/* Add subtle dividers between sections */
|
726 |
+
.form-container > div {
|
727 |
+
padding-bottom: 1.5rem !important;
|
728 |
+
margin-bottom: 1.5rem !important;
|
729 |
+
border-bottom: 1px solid #f1f5f9 !important;
|
730 |
+
}
|
731 |
+
|
732 |
+
/* Style model selection section */
|
733 |
+
.select-wrap {
|
734 |
+
background: #ffffff !important;
|
735 |
+
padding: 1.5rem !important;
|
736 |
+
border-radius: 8px !important;
|
737 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
738 |
+
margin-bottom: 2rem !important;
|
739 |
+
}
|
740 |
+
|
741 |
+
/* Style the metrics display */
|
742 |
+
.dashboard span {
|
743 |
+
font-family: 'Inter', sans-serif !important;
|
744 |
+
font-weight: 500 !important;
|
745 |
+
color: #334155 !important;
|
746 |
}
|
747 |
|
748 |
+
/* Add subtle animation to interactive elements */
|
749 |
+
button, select, .slider-percentage {
|
750 |
+
transition: all 0.2s ease-in-out !important;
|
|
|
751 |
}
|
752 |
|
753 |
+
/* Style the ROC curve container */
|
754 |
+
.plot-container {
|
755 |
+
background: #ffffff !important;
|
756 |
+
border-radius: 8px !important;
|
757 |
+
padding: 1rem !important;
|
758 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
759 |
+
}
|
760 |
+
|
761 |
+
/* Add container styles for opt1 and opt2 sections */
|
762 |
+
#opt1, #opt2 {
|
763 |
+
background: #ffffff !important;
|
764 |
+
border-radius: 8px !important;
|
765 |
+
padding: 1.5rem !important;
|
766 |
+
margin-top: 1.5rem !important;
|
767 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
|
768 |
+
}
|
769 |
|
770 |
+
/* Style the distribution titles */
|
771 |
+
.distribution-title {
|
772 |
+
font-family: 'Inter', sans-serif !important;
|
773 |
+
font-weight: 600 !important;
|
774 |
+
color: #1e293b !important;
|
775 |
+
margin-bottom: 1rem !important;
|
776 |
+
text-align: center !important;
|
777 |
}
|
778 |
+
|
779 |
+
'''
|
780 |
+
|
781 |
+
with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
|
782 |
|
783 |
+
# gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title")
|
784 |
gr.Markdown(content)
|
785 |
|
786 |
with gr.Row():
|
|
|
788 |
# label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")
|
789 |
|
790 |
# info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
|
791 |
+
model_dropdown = gr.Dropdown(
|
792 |
+
choices=models,
|
793 |
+
label="Select Fine-tuned Model",
|
794 |
+
elem_classes="dropdown-menu"
|
795 |
+
)
|
796 |
+
increment_slider = gr.Slider(
|
797 |
+
minimum=1,
|
798 |
+
maximum=100,
|
799 |
+
step=1,
|
800 |
+
label="Schools Percentage",
|
801 |
+
value=1,
|
802 |
+
elem_id="increment-slider",
|
803 |
+
elem_classes="gradio-slider"
|
804 |
+
)
|
805 |
|
806 |
+
with gr.Row():
|
807 |
+
btn = gr.Button("Submit")
|
808 |
|
|
|
|
|
809 |
gr.Markdown("<p class='description'>Dashboard</p>")
|
810 |
+
|
811 |
with gr.Row():
|
812 |
output_text = gr.Textbox(label="")
|
813 |
# output_image = gr.Image(label="ROC")
|
|
|
814 |
with gr.Row():
|
815 |
+
plot_output = gr.Plot(label="ROC")
|
816 |
+
|
817 |
+
with gr.Row():
|
818 |
+
opt1_pie = gr.Plot(label="ER")
|
819 |
+
opt2_pie = gr.Plot(label="ME")
|
820 |
# output_summary = gr.Textbox(label="Summary")
|
821 |
|
822 |
+
|
823 |
|
824 |
+
btn.click(
|
825 |
+
fn=process_file,
|
826 |
+
inputs=[model_dropdown,increment_slider],
|
827 |
+
outputs=[output_text,plot_output,opt1_pie,opt2_pie]
|
828 |
+
)
|
829 |
|
830 |
|
831 |
# Launch the app
|
result.txt
CHANGED
@@ -3,5 +3,5 @@ total_acc: 69.00702106318957
|
|
3 |
precisions: 0.7236623191454734
|
4 |
recalls: 0.6900702106318957
|
5 |
f1_scores: 0.6802420656474512
|
6 |
-
time_taken_from_start:
|
7 |
auc_score: 0.7457100293916334
|
|
|
3 |
precisions: 0.7236623191454734
|
4 |
recalls: 0.6900702106318957
|
5 |
f1_scores: 0.6802420656474512
|
6 |
+
time_taken_from_start: 53.13972353935242
|
7 |
auc_score: 0.7457100293916334
|