Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import shutil | |
import librosa | |
import binascii | |
import warnings | |
import midi2audio | |
import pytube as pt # to download the youtube videos as audios | |
import gradio as gr | |
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor | |
yt_video_dir = "./yt_dir" | |
outputs_dir = "./midi_wav_outputs" | |
os.makedirs(outputs_dir, exist_ok=True) | |
os.makedirs(yt_video_dir, exist_ok=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano").to(device) | |
processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") | |
composers = model.generation_config.composer_to_feature_token.keys() | |
def get_audio_from_yt_video(yt_link): | |
try: | |
yt = pt.YouTube(yt_link) | |
t = yt.streams.filter(only_audio=True) | |
filename = os.path.join(yt_video_dir, binascii.hexlify(os.urandom(8)).decode() + ".mp4") | |
t[0].download(filename=filename) | |
except: | |
warnings.warn(f"Video Not Found at {yt_link}") | |
filename = None | |
return filename, filename | |
def prepare_output_file(tokenizer_output): | |
# Add some random values so that no two file names are same | |
output_file_name = "output_" + binascii.hexlify(os.urandom(8)).decode() | |
midi_output = os.path.join(outputs_dir, output_file_name + ".mid") | |
# write the .mid file | |
tokenizer_output[0].write(midi_output) | |
# convert .mid file to .wav using `midi2audio` | |
wav_output = midi_output.replace(".mid", ".wav") | |
midi2audio.FluidSynth().midi_to_audio(midi_output, wav_output) | |
from IPython.display import Audio | |
return wav_output, wav_output, midi_output | |
def inference(file_uploaded, composer): | |
# to save the native sampling rate of the file, sr=None is used, but this can cause some silent errors where the | |
# generated output will not be upto the desired quality. If that happens please consider switching sr to 44100 Hz. | |
waveform, sr = librosa.load(file_uploaded, sr=None) | |
inputs = processor(audio=waveform, sampling_rate=sr, return_tensors="pt").to(device) | |
model_output = model.generate(input_features=inputs["input_features"], composer=composer) | |
tokenizer_output = processor.batch_decode(token_ids=model_output.to("cpu"), feature_extractor_output=inputs.to("cpu"))["pretty_midi_objects"] | |
return prepare_output_file(tokenizer_output) | |
block = gr.Blocks() | |
with block: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Pop2piano | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
A demo for Pop2Piano:Pop Audio-based Piano Cover Generation.<br> | |
Please select the composer(Arranger) and upload the pop audio or enter the YouTube link and then click Generate. | |
</p> | |
</div> | |
""" | |
) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
file_uploaded = gr.Audio(label="Upload an audio", type="filepath") | |
with gr.Column(): | |
with gr.Row(): | |
yt_link = gr.Textbox(label="Enter YouTube link of the Video") | |
yt_btn = gr.Button("Get Audio from the YT link(Press this before pressing Generate)") | |
yt_audio_path = gr.Audio(label="Audio Extracted from the YouTube Video", interactive=False) | |
yt_btn.click(get_audio_from_yt_video, inputs=[yt_link], outputs=[yt_audio_path, file_uploaded]) | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
composer = gr.Dropdown(label="Arranger", choices=composers, value="composer1") | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
btn = gr.Button("Generate") | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
wav_output2 = gr.File(label="Download the Generated MIDI (.wav)") | |
wav_output1 = gr.Audio(label="Listen to the Generated MIDI") | |
midi_output = gr.File(label="Download the Generated MIDI (.mid)") | |
btn.click(inference, inputs=[file_uploaded, composer], outputs=[wav_output1, wav_output2, midi_output]) | |
gr.Examples([ | |
["./examples/custom_song.mp3", "composer1"], | |
["./examples/BornThisWay.mp3", "composer1"], | |
["./examples/Sk8erBoi.mp3", "composer2"], | |
], | |
fn=inference, | |
inputs=[file_uploaded, composer], | |
outputs=[wav_output1, wav_output2, midi_output], | |
cache_examples=True | |
) | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p><a href="http://sweetcocoa.github.io/pop2piano_samples" style="text-decoration: underline;" target="_blank">Project Page</a> | |
</p> | |
</div> | |
""" | |
) | |
block.launch(debug=False) | |
shutil.rmtree("./midi_wav_outputs") |