import os import torch import shutil import librosa import binascii import warnings import midi2audio import pytube as pt # to download the youtube videos as audios import gradio as gr from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor yt_video_dir = "./yt_dir" outputs_dir = "./midi_wav_outputs" os.makedirs(outputs_dir, exist_ok=True) os.makedirs(yt_video_dir, exist_ok=True) device = "cuda" if torch.cuda.is_available() else "cpu" model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano").to(device) processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") composers = model.generation_config.composer_to_feature_token.keys() def get_audio_from_yt_video(yt_link): try: yt = pt.YouTube(yt_link) t = yt.streams.filter(only_audio=True) filename = os.path.join(yt_video_dir, binascii.hexlify(os.urandom(8)).decode() + ".mp4") t[0].download(filename=filename) except: warnings.warn(f"Video Not Found at {yt_link}") filename = None return filename, filename def prepare_output_file(tokenizer_output): # Add some random values so that no two file names are same output_file_name = "output_" + binascii.hexlify(os.urandom(8)).decode() midi_output = os.path.join(outputs_dir, output_file_name + ".mid") # write the .mid file tokenizer_output[0].write(midi_output) # convert .mid file to .wav using `midi2audio` wav_output = midi_output.replace(".mid", ".wav") midi2audio.FluidSynth().midi_to_audio(midi_output, wav_output) from IPython.display import Audio return wav_output, wav_output, midi_output def inference(file_uploaded, composer): # to save the native sampling rate of the file, sr=None is used, but this can cause some silent errors where the # generated output will not be upto the desired quality. If that happens please consider switching sr to 44100 Hz. waveform, sr = librosa.load(file_uploaded, sr=None) inputs = processor(audio=waveform, sampling_rate=sr, return_tensors="pt").to(device) model_output = model.generate(input_features=inputs["input_features"], composer=composer) tokenizer_output = processor.batch_decode(token_ids=model_output.to("cpu"), feature_extractor_output=inputs.to("cpu"))["pretty_midi_objects"] return prepare_output_file(tokenizer_output) block = gr.Blocks() with block: gr.HTML( """
A demo for Pop2Piano:Pop Audio-based Piano Cover Generation.
Please select the composer(Arranger) and upload the pop audio or enter the YouTube link and then click Generate.