File size: 11,935 Bytes
983d072
b9e7f35
 
 
 
 
4abec4b
a0a2137
c02c16f
6f13693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0a2137
c02c16f
a0a2137
 
c02c16f
 
a0a2137
981b9b1
7dcb97a
 
 
981b9b1
a0a2137
552f93e
a0a2137
983d072
6f13693
fa7bf1a
 
 
6f13693
 
 
 
fa7bf1a
 
 
 
7eed2ba
6f13693
7eed2ba
 
 
 
6f13693
4abec4b
 
08a7509
 
7134d92
08a7509
 
 
 
8d68db5
7134d92
08a7509
4abec4b
08a7509
 
e4046eb
9e256bb
4abec4b
08a7509
 
 
 
 
7134d92
08a7509
 
 
 
 
 
7b9ab38
7134d92
 
4abec4b
 
08a7509
 
 
9837774
981b9b1
 
 
4abec4b
 
08a7509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e7f35
 
4abec4b
fbebe9f
4abec4b
 
b9e7f35
 
4abec4b
b9e7f35
 
 
d633848
 
 
 
 
 
544b4ee
 
d633848
544b4ee
 
 
d633848
 
544b4ee
 
d633848
 
 
 
 
 
 
 
 
544b4ee
 
d633848
 
 
 
544b4ee
 
 
 
d633848
 
 
 
 
 
544b4ee
 
d633848
 
544b4ee
 
d633848
 
544b4ee
 
d633848
544b4ee
d633848
544b4ee
 
 
d633848
544b4ee
d633848
544b4ee
 
 
 
 
 
 
d633848
544b4ee
 
 
 
 
 
 
 
 
d633848
 
 
544b4ee
 
d633848
 
 
544b4ee
 
d633848
 
 
 
 
 
 
 
544b4ee
9ce81f8
 
9837774
 
08a7509
 
 
b583b60
08a7509
b9e7f35
b2f01f8
 
 
 
08a7509
 
0368d4d
fa7bf1a
6f13693
 
 
 
 
 
fa7bf1a
f6be51a
 
 
08a7509
183b6f0
7dcb97a
981b9b1
552f93e
183b6f0
 
0431a03
7dcb97a
f6be51a
981b9b1
183b6f0
08a7509
b9e7f35
 
08a7509
b9e7f35
 
59af101
b9e7f35
552f93e
2144105
6d9770b
a0a2137
 
 
59c5d79
 
a0a2137
552f93e
8b6ff0e
08a7509
552f93e
6f13693
fa7bf1a
6f13693
 
552f93e
6f13693
b9e7f35
08a7509
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from huggingface_hub import InferenceApi, InferenceClient
from datasets import load_dataset
import pandas as pd
import re

def rank_score(repo_str):
    p_list = re.findall(r"[-_xlv\d]+" ,repo_str.split("/")[-1])
    xl_in_str = any(map(lambda x: "xl" in x, p_list))
    v_in_str = any(map(lambda x: "v" in x and 
                       any(map(lambda y: 
                               any(map(lambda z: y.startswith(z), "0123456789"))
                               ,x.split("v")))
                       , p_list))
    stable_in_str = repo_str.split("/")[-1].lower().startswith("stable")
    score = sum(map(lambda t2: t2[0] * t2[1] ,(zip(*[[stable_in_str, xl_in_str, v_in_str], [1000, 100, 10]]))))
    #return p_list, xl_in_str, v_in_str, stable_in_str, score
    return score

def shorten_by(repo_list, by = None):
    if by == "user":
        return sorted(
            pd.DataFrame(pd.Series(repo_list).map(lambda x: (x.split("/")[0], x)).values.tolist()).groupby(0)[1].apply(list).map(lambda x: 
                                                                                                                                    sorted(x, key = rank_score, reverse = True)[0]).values.tolist(),
            key = rank_score, reverse = True
        )
    if by == "model":
        return sorted(repo_list, key = lambda x: rank_score(x), reverse = True)
    return repo_list

'''
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
prompt_df = dataset["train"].to_pandas()
'''
prompt_df = pd.read_csv("Stable-Diffusion-Prompts.csv")

DEFAULT_MODEL = "stabilityai/stable-diffusion-2-1"
#DEFAULT_PROMPT = "1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt"
DEFAULT_PROMPT = "house"


def get_samples():
    prompt_list = prompt_df.sample(n = 10)["Prompt"].map(lambda x: x).values.tolist()
    return prompt_list

def update_models(models_rank_by = "model"):
    client = InferenceClient()
    models = client.list_deployed_models()
    list_models = models["text-to-image"]
    if hasattr(models_rank_by, "value"):
        list_models = shorten_by(list_models, models_rank_by.value)
    else:
        list_models = shorten_by(list_models, models_rank_by)
    return gr.Dropdown.update(choices=list_models) 

def update_prompts():
    return gr.Dropdown.update(choices=get_samples())

def get_params(request: gr.Request, models_rank_by):
    params = request.query_params
    ip = request.client.host
    req = {"params": params,
          "ip": ip}
    return update_models(models_rank_by), update_prompts()

'''
list_models = [
    "SDXL-1.0",
    "SD-1.5",
    "OpenJourney-V4",
    "Anything-V4",
    "Disney-Pixar-Cartoon",
    "Pixel-Art-XL",
    "Dalle-3-XL",
    "Midjourney-V4-XL",
]
'''

def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
                     seed=None):
    print("call {} {} one time".format(current_model, prompt))
    '''
    if current_model == "SD-1.5":
        API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
    elif current_model == "SDXL-1.0":
        API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
    elif current_model == "OpenJourney-V4":
        API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"       
    elif current_model == "Anything-V4":
        API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0" 
    elif current_model == "Disney-Pixar-Cartoon":
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
    elif current_model == "Pixel-Art-XL":
        API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
    elif current_model == "Dalle-3-XL":
        API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
    elif current_model == "Midjourney-V4-XL":
        API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
    '''

    API_TOKEN = os.environ.get("HF_READ_TOKEN")
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    if type(current_model) != type(""):
        current_model = DEFAULT_MODEL
    if type(prompt) != type(""):
        prompt = DEFAULT_PROMPT
    api = InferenceApi(current_model)
    api.headers = headers

    if image_style == "None style":
        payload = {
            "inputs": prompt + ", 8k",
            "is_negative": is_negative,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Cinematic":
        payload = {
            "inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
            "is_negative": is_negative + ", abstract, cartoon, stylized",
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Digital Art":
        payload = {
            "inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
            "is_negative": is_negative + ", sharp , modern , bright",
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Portrait":
        payload = {
            "inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
            "is_negative": is_negative,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }

    #image_bytes = requests.post(API_URL, headers=headers, json=payload).content
    image = api(data = payload)
    return image
    '''
    image = Image.open(io.BytesIO(image_bytes))
    return image
    '''


css = """
/* General Container Styles */
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
    max-width: 730px !important;
    margin: auto;
    padding-top: 1.5rem;
}

/* Button Styles */
.gr-button {
    color: white;
    border-color: black;
    background: black;
    white-space: nowrap;
}

.gr-button:focus {
    border-color: rgb(147 197 253 / var(--tw-border-opacity));
    outline: none;
    box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
    --tw-border-opacity: 1;
    --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
    --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
    --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
    --tw-ring-opacity: .5;
}

/* Footer Styles */
.footer, .dark .footer {
    margin-bottom: 45px;
    margin-top: 35px;
    text-align: center;
    border-bottom: 1px solid #e5e5e5;
}

.footer > p, .dark .footer > p {
    font-size: .8rem;
    display: inline-block;
    padding: 0 10px;
    transform: translateY(10px);
    background: white;
}

.dark .footer {
    border-color: #303030;
}

.dark .footer > p {
    background: #0b0f19;
}

/* Share Button Styles */
#share-btn-container {
    padding: 0 0.5rem !important;
    background-color: #000000;
    justify-content: center;
    align-items: center;
    border-radius: 9999px !important;
    max-width: 13rem;
    margin-left: auto;
}

#share-btn-container:hover {
    background-color: #060606;
}

#share-btn {
    all: initial;
    color: #ffffff;
    font-weight: 600;
    cursor: pointer;
    font-family: 'IBM Plex Sans', sans-serif;
    margin-left: 0.5rem !important;
    padding: 0.5rem !important;
    right: 0;
}

/* Animation Styles */
.animate-spin {
    animation: spin 1s linear infinite;
}

@keyframes spin {
    from { transform: rotate(0deg); }
    to { transform: rotate(360deg); }
}

/* Other Styles */
#gallery {
    min-height: 22rem;
    margin-bottom: 15px;
    margin-left: auto;
    margin-right: auto;
    border-bottom-right-radius: .5rem !important;
    border-bottom-left-radius: .5rem !important;
}
"""

with gr.Blocks(css=css) as demo:
    #with gr.Blocks() as demo:
    
    favicon = '<img src="" width="48px" style="display: inline">'
    gr.Markdown(
        f"""<h1><center>🐦 {favicon} AII Diffusion</center></h1>
            """
    )
    gr.Markdown(
        f"""<h2><center>May not stable, But have many choices.</center></h2>
            """
    )
    
    with gr.Row(elem_id="prompt-container"):
        with gr.Column():
            btn_refresh = gr.Button(value="Click to get current deployed models and newly Prompt candidates")
            models_rank_by = gr.Radio(choices=["model", "user"],
                            value="model", label="Models ranked by", elem_id="rank_radio")
            
            list_models = update_models(models_rank_by)
            list_prompts = get_samples()
            
            #btn_refresh.click(None, js="window.location.reload()")
            current_model = gr.Dropdown(label="Current Model", choices=list_models, value=DEFAULT_MODEL,
                                       info = "default model: {}".format(DEFAULT_MODEL)
                                       )
        
    with gr.Row("prompt-container"):
        text_prompt = gr.Textbox(label="Input Prompt", placeholder=DEFAULT_PROMPT, 
                                     value = DEFAULT_PROMPT,
                                     lines=2, elem_id="prompt-text-input")
        text_button = gr.Button("Manualy input Generate", variant='primary', elem_id="gen-button")
    with gr.Row("prompt-container"):
        select_prompt = gr.Dropdown(label="Prompt selected", choices=list_prompts, 
                                   value = DEFAULT_PROMPT,
                                   info = "default prompt: {}".format(DEFAULT_PROMPT)
                                   )
        select_button = gr.Button("Select Prompt Generate", variant='primary', elem_id="gen-button")
        
    with gr.Row():
        image_output = gr.Image(type="pil", label="Output Image", elem_id="gallery")
        
    with gr.Accordion("Advanced settings", open=False):
        negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1, elem_id="negative-prompt-text-input")
        image_style = gr.Dropdown(label="Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="Portrait", allow_custom_value=False)

    '''
    with gr.Row():
        with gr.Column():
            exps = gr.Examples(
                get_samples(),
                inputs = text_prompt,
                label = "Prompt Examples",
                elem_id = "Examples"
            )
    '''
            
    text_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
    select_button.click(generate_txt2img, inputs=[current_model, select_prompt, negative_prompt, image_style], outputs=image_output)
    btn_refresh.click(update_models, models_rank_by, current_model)
    btn_refresh.click(update_prompts, None, select_prompt)

    models_rank_by.change(update_models, models_rank_by, current_model)
    
    demo.load(get_params, models_rank_by, [current_model, select_prompt])

demo.launch(show_api=False)