|
import os, sys |
|
import cv2 |
|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
from torchvision.utils import save_image |
|
|
|
|
|
|
|
root_path = os.path.abspath('.') |
|
sys.path.append(root_path) |
|
from test_code.inference import super_resolve_img |
|
from test_code.test_utils import load_grl, load_rrdb |
|
|
|
|
|
def auto_download_if_needed(weight_path): |
|
if os.path.exists(weight_path): |
|
return |
|
|
|
if not os.path.exists("pretrained"): |
|
os.makedirs("pretrained") |
|
|
|
if weight_path == "pretrained/4x_APISR_GRL_GAN_generator.pth": |
|
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/4x_APISR_GRL_GAN_generator.pth") |
|
os.system("mv 4x_APISR_GRL_GAN_generator.pth pretrained") |
|
|
|
if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth": |
|
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth") |
|
os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained") |
|
|
|
|
|
|
|
def inference(img_path, model_name): |
|
|
|
try: |
|
weight_dtype = torch.float32 |
|
|
|
|
|
if model_name == "4xGRL": |
|
weight_path = "pretrained/4x_APISR_GRL_GAN_generator.pth" |
|
auto_download_if_needed(weight_path) |
|
generator = load_grl(weight_path, scale=4) |
|
|
|
elif model_name == "2xRRDB": |
|
weight_path = "pretrained/2x_APISR_RRDB_GAN_generator.pth" |
|
auto_download_if_needed(weight_path) |
|
generator = load_rrdb(weight_path, scale=2) |
|
|
|
else: |
|
raise gr.Error(error) |
|
|
|
generator = generator.to(dtype=weight_dtype) |
|
|
|
|
|
|
|
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, crop_for_4x=True) |
|
save_image(super_resolved_img, "SR_result.png") |
|
outputs = cv2.imread("SR_result.png") |
|
outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR) |
|
|
|
return outputs |
|
|
|
|
|
except Exception as error: |
|
raise gr.Error(f"global exception: {error}") |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
MARKDOWN = \ |
|
""" |
|
## APISR: Anime Production Inspired Real-World Anime Super-Resolution (CVPR 2024) |
|
|
|
[GitHub](https://github.com/Kiteretsu77/APISR) | [Paper](https://arxiv.org/abs/2403.01598) |
|
|
|
If APISR is helpful for you, please help star the GitHub Repo. Thanks! |
|
""" |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown(MARKDOWN) |
|
with gr.Row(elem_classes=["container"]): |
|
with gr.Column(scale=2): |
|
input_image = gr.Image(type="filepath", label="Input") |
|
model_name = gr.Dropdown( |
|
[ |
|
"2xRRDB", |
|
"4xGRL" |
|
], |
|
type="value", |
|
value="4xGRL", |
|
label="model", |
|
) |
|
run_btn = gr.Button(value="Submit") |
|
|
|
with gr.Column(scale=3): |
|
output_image = gr.Image(type="numpy", label="Output image") |
|
|
|
with gr.Row(elem_classes=["container"]): |
|
gr.Examples( |
|
[ |
|
["__assets__/lr_inputs/image-00277.png"], |
|
["__assets__/lr_inputs/image-00542.png"], |
|
["__assets__/lr_inputs/41.png"], |
|
["__assets__/lr_inputs/f91.jpg"], |
|
["__assets__/lr_inputs/image-00440.png"], |
|
["__assets__/lr_inputs/image-00164.png"], |
|
["__assets__/lr_inputs/img_eva.jpeg"], |
|
], |
|
[input_image], |
|
) |
|
|
|
run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image]) |
|
|
|
block.launch() |