|
from dataclasses import dataclass |
|
from typing import Dict, Optional, Tuple, Union |
|
from einops import rearrange |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import UNet2DConditionLoadersMixin |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor |
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
|
from models_diffusers.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block |
|
|
|
|
|
import inspect |
|
import itertools |
|
import os |
|
import re |
|
from collections import OrderedDict |
|
from functools import partial |
|
from typing import Any, Callable, List, Optional, Tuple, Union |
|
|
|
from diffusers import __version__ |
|
from diffusers.utils import ( |
|
CONFIG_NAME, |
|
DIFFUSERS_CACHE, |
|
FLAX_WEIGHTS_NAME, |
|
HF_HUB_OFFLINE, |
|
MIN_PEFT_VERSION, |
|
SAFETENSORS_WEIGHTS_NAME, |
|
WEIGHTS_NAME, |
|
_add_variant, |
|
_get_model_file, |
|
check_peft_version, |
|
deprecate, |
|
is_accelerate_available, |
|
is_torch_version, |
|
logging, |
|
) |
|
from diffusers.utils.hub_utils import PushToHubMixin |
|
from diffusers.models.modeling_utils import load_model_dict_into_meta, load_state_dict |
|
|
|
if is_torch_version(">=", "1.9.0"): |
|
_LOW_CPU_MEM_USAGE_DEFAULT = True |
|
else: |
|
_LOW_CPU_MEM_USAGE_DEFAULT = False |
|
|
|
if is_accelerate_available(): |
|
import accelerate |
|
from accelerate.utils import set_module_tensor_to_device |
|
from accelerate.utils.versions import is_torch_version |
|
|
|
from models_diffusers.camera.attention_processor import XFormersAttnProcessor as CustomizedXFormerAttnProcessor |
|
from models_diffusers.camera.attention_processor import PoseAdaptorXFormersAttnProcessor |
|
|
|
|
|
|
|
|
|
|
|
from models_diffusers.camera.attention_processor import PoseAdaptorAttnProcessor |
|
from models_diffusers.camera.attention_processor import AttnProcessor as CustomizedAttnProcessor |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class UNetSpatioTemporalConditionOutput(BaseOutput): |
|
""" |
|
The output of [`UNetSpatioTemporalConditionModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): |
|
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. |
|
""" |
|
|
|
sample: torch.FloatTensor = None |
|
|
|
|
|
class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
r""" |
|
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample |
|
shaped output. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. |
|
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): |
|
The tuple of downsample blocks to use. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): |
|
The tuple of upsample blocks to use. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
addition_time_embed_dim: (`int`, defaults to 256): |
|
Dimension to to encode the additional time ids. |
|
projection_class_embeddings_input_dim (`int`, defaults to 768): |
|
The dimension of the projection of encoded `added_time_ids`. |
|
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. |
|
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): |
|
The dimension of the cross attention features. |
|
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): |
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for |
|
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], |
|
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. |
|
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): |
|
The number of attention heads. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 8, |
|
out_channels: int = 4, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"DownBlockSpatioTemporal", |
|
), |
|
up_block_types: Tuple[str] = ( |
|
"UpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
), |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
addition_time_embed_dim: int = 256, |
|
projection_class_embeddings_input_dim: int = 768, |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1024, |
|
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, |
|
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20), |
|
num_frames: int = 25, |
|
): |
|
super().__init__() |
|
|
|
self.sample_size = sample_size |
|
|
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
self.mask_token = nn.Parameter(torch.randn(1, 1, 4, 1, 1)) |
|
|
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
|
|
time_embed_dim = block_out_channels[0] * 4 |
|
|
|
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) |
|
timestep_input_dim = block_out_channels[0] |
|
|
|
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) |
|
|
|
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) |
|
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(num_attention_heads, int): |
|
num_attention_heads = (num_attention_heads,) * len(down_block_types) |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) |
|
|
|
if isinstance(layers_per_block, int): |
|
layers_per_block = [layers_per_block] * len(down_block_types) |
|
|
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) |
|
|
|
blocks_time_embed_dim = time_embed_dim |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block[i], |
|
transformer_layers_per_block=transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=1e-5, |
|
cross_attention_dim=cross_attention_dim[i], |
|
num_attention_heads=num_attention_heads[i], |
|
resnet_act_fn="silu", |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlockSpatioTemporal( |
|
block_out_channels[-1], |
|
temb_channels=blocks_time_embed_dim, |
|
transformer_layers_per_block=transformer_layers_per_block[-1], |
|
cross_attention_dim=cross_attention_dim[-1], |
|
num_attention_heads=num_attention_heads[-1], |
|
) |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_num_attention_heads = list(reversed(num_attention_heads)) |
|
reversed_layers_per_block = list(reversed(layers_per_block)) |
|
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) |
|
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=reversed_layers_per_block[i] + 1, |
|
transformer_layers_per_block=reversed_transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=1e-5, |
|
resolution_idx=i, |
|
cross_attention_dim=reversed_cross_attention_dim[i], |
|
num_attention_heads=reversed_num_attention_heads[i], |
|
resnet_act_fn="silu", |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) |
|
self.conv_act = nn.SiLU() |
|
|
|
self.conv_out = nn.Conv2d( |
|
block_out_channels[0], |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
@property |
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors( |
|
name: str, |
|
module: torch.nn.Module, |
|
processors: Dict[str, AttentionProcessor], |
|
): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: |
|
""" |
|
Sets the attention processor to use [feed forward |
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). |
|
|
|
Parameters: |
|
chunk_size (`int`, *optional*): |
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually |
|
over each tensor of dim=`dim`. |
|
dim (`int`, *optional*, defaults to `0`): |
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) |
|
or dim=1 (sequence length). |
|
""" |
|
if dim not in [0, 1]: |
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") |
|
|
|
|
|
chunk_size = chunk_size or 1 |
|
|
|
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, chunk_size, dim) |
|
|
|
def set_pose_cond_attn_processor( |
|
self, |
|
add_spatial=False, |
|
add_temporal=False, |
|
enable_xformers=False, |
|
attn_processor_name='attn1', |
|
pose_feature_dimensions=[320, 640, 1280, 1280], |
|
**attention_processor_kwargs, |
|
): |
|
all_attn_processors = {} |
|
set_processor_names = attn_processor_name.split(',') |
|
if add_spatial: |
|
for processor_key in self.attn_processors.keys(): |
|
if 'temporal' in processor_key: |
|
continue |
|
processor_name = processor_key.split('.')[-2] |
|
cross_attention_dim = None if processor_name == 'attn1' else self.config.cross_attention_dim |
|
if processor_key.startswith("mid_block"): |
|
hidden_size = self.config.block_out_channels[-1] |
|
block_id = -1 |
|
add_pose_adaptor = processor_name in set_processor_names |
|
pose_feature_dim = pose_feature_dimensions[block_id] if add_pose_adaptor else None |
|
elif processor_key.startswith("up_blocks"): |
|
block_id = int(processor_key[len("up_blocks.")]) |
|
hidden_size = list(reversed(self.config.block_out_channels))[block_id] |
|
add_pose_adaptor = processor_name in set_processor_names |
|
pose_feature_dim = list(reversed(pose_feature_dimensions))[block_id] if add_pose_adaptor else None |
|
else: |
|
block_id = int(processor_key[len("down_blocks.")]) |
|
hidden_size = self.config.block_out_channels[block_id] |
|
add_pose_adaptor = processor_name in set_processor_names |
|
pose_feature_dim = pose_feature_dimensions[block_id] if add_pose_adaptor else None |
|
if add_pose_adaptor and enable_xformers: |
|
all_attn_processors[processor_key] = PoseAdaptorXFormersAttnProcessor(hidden_size=hidden_size, |
|
pose_feature_dim=pose_feature_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
**attention_processor_kwargs) |
|
elif add_pose_adaptor: |
|
all_attn_processors[processor_key] = PoseAdaptorAttnProcessor(hidden_size=hidden_size, |
|
pose_feature_dim=pose_feature_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
**attention_processor_kwargs) |
|
elif enable_xformers: |
|
all_attn_processors[processor_key] = CustomizedXFormerAttnProcessor() |
|
else: |
|
all_attn_processors[processor_key] = CustomizedAttnProcessor() |
|
else: |
|
for processor_key in self.attn_processors.keys(): |
|
if 'temporal' not in processor_key and enable_xformers: |
|
all_attn_processors[processor_key] = CustomizedXFormerAttnProcessor() |
|
elif 'temporal' not in processor_key: |
|
all_attn_processors[processor_key] = CustomizedAttnProcessor() |
|
|
|
if add_temporal: |
|
for processor_key in self.attn_processors.keys(): |
|
if 'temporal' not in processor_key: |
|
continue |
|
processor_name = processor_key.split('.')[-2] |
|
cross_attention_dim = None if processor_name == 'attn1' else self.config.cross_attention_dim |
|
if processor_key.startswith("mid_block"): |
|
hidden_size = self.config.block_out_channels[-1] |
|
block_id = -1 |
|
add_pose_adaptor = processor_name in set_processor_names |
|
pose_feature_dim = pose_feature_dimensions[block_id] if add_pose_adaptor else None |
|
elif processor_key.startswith("up_blocks"): |
|
block_id = int(processor_key[len("up_blocks.")]) |
|
hidden_size = list(reversed(self.config.block_out_channels))[block_id] |
|
add_pose_adaptor = (processor_name in set_processor_names) |
|
pose_feature_dim = list(reversed(pose_feature_dimensions))[block_id] if add_pose_adaptor else None |
|
else: |
|
block_id = int(processor_key[len("down_blocks.")]) |
|
hidden_size = self.config.block_out_channels[block_id] |
|
add_pose_adaptor = processor_name in set_processor_names |
|
pose_feature_dim = pose_feature_dimensions[block_id] if add_pose_adaptor else None |
|
if add_pose_adaptor and enable_xformers: |
|
all_attn_processors[processor_key] = PoseAdaptorAttnProcessor(hidden_size=hidden_size, |
|
pose_feature_dim=pose_feature_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
**attention_processor_kwargs) |
|
elif add_pose_adaptor: |
|
all_attn_processors[processor_key] = PoseAdaptorAttnProcessor(hidden_size=hidden_size, |
|
pose_feature_dim=pose_feature_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
**attention_processor_kwargs) |
|
elif enable_xformers: |
|
all_attn_processors[processor_key] = CustomizedXFormerAttnProcessor() |
|
else: |
|
all_attn_processors[processor_key] = CustomizedAttnProcessor() |
|
else: |
|
for processor_key in self.attn_processors.keys(): |
|
if 'temporal' in processor_key and enable_xformers: |
|
all_attn_processors[processor_key] = CustomizedXFormerAttnProcessor() |
|
elif 'temporal' in processor_key: |
|
all_attn_processors[processor_key] = CustomizedAttnProcessor() |
|
|
|
self.set_attn_processor(all_attn_processors) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
added_time_ids: torch.Tensor, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
pose_features: List[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: |
|
r""" |
|
The [`UNetSpatioTemporalConditionModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. |
|
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.FloatTensor`): |
|
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. |
|
added_time_ids: (`torch.FloatTensor`): |
|
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal |
|
embeddings and added to the time embeddings. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain |
|
tuple. |
|
Returns: |
|
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise |
|
a `tuple` is returned where the first element is the sample tensor. |
|
""" |
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
batch_size, num_frames = sample.shape[:2] |
|
timesteps = timesteps.expand(batch_size) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb) |
|
|
|
time_embeds = self.add_time_proj(added_time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((batch_size, -1)) |
|
time_embeds = time_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(time_embeds) |
|
emb = emb + aug_emb |
|
|
|
|
|
|
|
sample = sample.flatten(0, 1) |
|
|
|
|
|
emb = emb.repeat_interleave(num_frames, dim=0) |
|
|
|
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) |
|
|
|
is_adapter = is_controlnet = False |
|
if (down_block_additional_residuals is not None): |
|
if (mid_block_additional_residual is not None): |
|
is_controlnet = True |
|
else: |
|
is_adapter = True |
|
|
|
down_block_res_samples = (sample,) |
|
for block_idx, downsample_block in enumerate(self.down_blocks): |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
|
|
|
|
|
|
additional_residuals = {} |
|
if is_adapter and len(down_block_additional_residuals) > 0: |
|
additional_residuals['additional_residuals'] = down_block_additional_residuals.pop(0) |
|
|
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
pose_feature=pose_features[block_idx] if pose_features is not None else None, |
|
**additional_residuals, |
|
) |
|
else: |
|
|
|
|
|
|
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
if is_adapter and len(down_block_additional_residuals) > 0: |
|
additional_residuals = down_block_additional_residuals.pop(0) |
|
if sample.dim() == 5: |
|
additional_residuals = rearrange(additional_residuals, '(b f) c h w -> b c f h w', b=sample.shape[0]) |
|
sample = sample + additional_residuals |
|
|
|
down_block_res_samples += res_samples |
|
|
|
if is_controlnet: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip(down_block_res_samples, down_block_additional_residuals): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
sample = self.mid_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
pose_feature=pose_features[-1] if pose_features is not None else None, |
|
) |
|
|
|
if is_controlnet: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
for block_idx, upsample_block in enumerate(self.up_blocks): |
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
pose_feature=pose_features[-(block_idx + 1)] if pose_features is not None else None, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
|
|
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNetSpatioTemporalConditionOutput(sample=sample) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], custom_resume=False, **kwargs): |
|
r""" |
|
Instantiate a pretrained PyTorch model from a pretrained model configuration. |
|
|
|
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To |
|
train the model, set it back in training mode with `model.train()`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved |
|
with [`~ModelMixin.save_pretrained`]. |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info (`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
from_flax (`bool`, *optional*, defaults to `False`): |
|
Load the model weights from a Flax checkpoint save file. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
mirror (`str`, *optional*): |
|
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not |
|
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more |
|
information. |
|
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): |
|
A map that specifies where each submodule should go. It doesn't need to be defined for each |
|
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the |
|
same device. |
|
|
|
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For |
|
more information about each option see [designing a device |
|
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). |
|
max_memory (`Dict`, *optional*): |
|
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for |
|
each GPU and the available CPU RAM if unset. |
|
offload_folder (`str` or `os.PathLike`, *optional*): |
|
The path to offload weights if `device_map` contains the value `"disk"`. |
|
offload_state_dict (`bool`, *optional*): |
|
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if |
|
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` |
|
when there is some disk offload. |
|
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): |
|
Speed up model loading only loading the pretrained weights and not initializing the weights. This also |
|
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. |
|
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this |
|
argument to `True` will raise an error. |
|
variant (`str`, *optional*): |
|
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when |
|
loading `from_flax`. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the |
|
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors` |
|
weights. If set to `False`, `safetensors` weights are not loaded. |
|
|
|
<Tip> |
|
|
|
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with |
|
`huggingface-cli login`. You can also activate the special |
|
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a |
|
firewalled environment. |
|
|
|
</Tip> |
|
|
|
Example: |
|
|
|
```py |
|
from diffusers import UNet2DConditionModel |
|
|
|
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") |
|
``` |
|
|
|
If you get the error message below, you need to finetune the weights for your downstream task: |
|
|
|
```bash |
|
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: |
|
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated |
|
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. |
|
``` |
|
""" |
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) |
|
force_download = kwargs.pop("force_download", False) |
|
from_flax = kwargs.pop("from_flax", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
output_loading_info = kwargs.pop("output_loading_info", False) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
device_map = kwargs.pop("device_map", None) |
|
max_memory = kwargs.pop("max_memory", None) |
|
offload_folder = kwargs.pop("offload_folder", None) |
|
offload_state_dict = kwargs.pop("offload_state_dict", False) |
|
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) |
|
variant = kwargs.pop("variant", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = True |
|
allow_pickle = True |
|
|
|
if low_cpu_mem_usage and not is_accelerate_available(): |
|
low_cpu_mem_usage = False |
|
logger.warning( |
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" |
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" |
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" |
|
" install accelerate\n```\n." |
|
) |
|
|
|
if device_map is not None and not is_accelerate_available(): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" |
|
" `device_map=None`. You can install accelerate with `pip install accelerate`." |
|
) |
|
|
|
|
|
if device_map is not None and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `device_map=None`." |
|
) |
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `low_cpu_mem_usage=False`." |
|
) |
|
|
|
if low_cpu_mem_usage is False and device_map is not None: |
|
raise ValueError( |
|
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" |
|
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." |
|
) |
|
|
|
|
|
config_path = pretrained_model_name_or_path |
|
|
|
user_agent = { |
|
"diffusers": __version__, |
|
"file_type": "model", |
|
"framework": "pytorch", |
|
} |
|
|
|
|
|
config, unused_kwargs, commit_hash = cls.load_config( |
|
config_path, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
return_commit_hash=True, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
device_map=device_map, |
|
max_memory=max_memory, |
|
offload_folder=offload_folder, |
|
offload_state_dict=offload_state_dict, |
|
user_agent=user_agent, |
|
**kwargs, |
|
) |
|
|
|
if not custom_resume: |
|
|
|
config['in_channels'] = config['in_channels'] + 1 |
|
|
|
|
|
model_file = None |
|
if from_flax: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=FLAX_WEIGHTS_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
|
|
from diffusers.models.modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model |
|
|
|
model = load_flax_checkpoint_in_pytorch_model(model, model_file) |
|
else: |
|
if use_safetensors: |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
except IOError as e: |
|
if not allow_pickle: |
|
raise e |
|
pass |
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=_add_variant(WEIGHTS_NAME, variant), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
|
|
if low_cpu_mem_usage: |
|
|
|
with accelerate.init_empty_weights(): |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
|
|
if device_map is None: |
|
param_device = "cpu" |
|
state_dict = load_state_dict(model_file, variant=variant) |
|
|
|
if not custom_resume: |
|
|
|
conv_in_weight = state_dict['conv_in.weight'] |
|
assert conv_in_weight.shape == (320, 8, 3, 3) |
|
conv_in_weight_new = torch.randn(320, 9, 3, 3).to(conv_in_weight.device).to(conv_in_weight.dtype) |
|
conv_in_weight_new[:, :8, :, :] = conv_in_weight |
|
state_dict['conv_in.weight'] = conv_in_weight_new |
|
|
|
|
|
mask_token = torch.randn(1, 1, 4, 1, 1).to(conv_in_weight.device).to(conv_in_weight.dtype) |
|
state_dict["mask_token"] = mask_token |
|
|
|
model._convert_deprecated_attention_blocks(state_dict) |
|
|
|
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) |
|
if len(missing_keys) > 0: |
|
raise ValueError( |
|
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" |
|
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" |
|
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" |
|
" those weights or else make sure your checkpoint file is correct." |
|
) |
|
|
|
unexpected_keys = load_model_dict_into_meta( |
|
model, |
|
state_dict, |
|
device=param_device, |
|
dtype=torch_dtype, |
|
model_name_or_path=pretrained_model_name_or_path, |
|
) |
|
|
|
if cls._keys_to_ignore_on_load_unexpected is not None: |
|
for pat in cls._keys_to_ignore_on_load_unexpected: |
|
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warn( |
|
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" |
|
) |
|
|
|
else: |
|
|
|
|
|
try: |
|
accelerate.load_checkpoint_and_dispatch( |
|
model, |
|
model_file, |
|
device_map, |
|
max_memory=max_memory, |
|
offload_folder=offload_folder, |
|
offload_state_dict=offload_state_dict, |
|
dtype=torch_dtype, |
|
) |
|
except AttributeError as e: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "'Attention' object has no attribute" in str(e): |
|
logger.warn( |
|
f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}" |
|
" was saved with deprecated attention block weight names. We will load it with the deprecated attention block" |
|
" names and convert them on the fly to the new attention block format. Please re-save the model after this conversion," |
|
" so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint," |
|
" please also re-upload it or open a PR on the original repository." |
|
) |
|
model._temp_convert_self_to_deprecated_attention_blocks() |
|
accelerate.load_checkpoint_and_dispatch( |
|
model, |
|
model_file, |
|
device_map, |
|
max_memory=max_memory, |
|
offload_folder=offload_folder, |
|
offload_state_dict=offload_state_dict, |
|
dtype=torch_dtype, |
|
) |
|
model._undo_temp_convert_self_to_deprecated_attention_blocks() |
|
else: |
|
raise e |
|
|
|
loading_info = { |
|
"missing_keys": [], |
|
"unexpected_keys": [], |
|
"mismatched_keys": [], |
|
"error_msgs": [], |
|
} |
|
else: |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
state_dict = load_state_dict(model_file, variant=variant) |
|
model._convert_deprecated_attention_blocks(state_dict) |
|
|
|
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( |
|
model, |
|
state_dict, |
|
model_file, |
|
pretrained_model_name_or_path, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
) |
|
|
|
loading_info = { |
|
"missing_keys": missing_keys, |
|
"unexpected_keys": unexpected_keys, |
|
"mismatched_keys": mismatched_keys, |
|
"error_msgs": error_msgs, |
|
} |
|
|
|
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): |
|
raise ValueError( |
|
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." |
|
) |
|
elif torch_dtype is not None: |
|
model = model.to(torch_dtype) |
|
|
|
model.register_to_config(_name_or_path=pretrained_model_name_or_path) |
|
|
|
|
|
model.eval() |
|
if output_loading_info: |
|
return model, loading_info |
|
|
|
return model |
|
|