|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import random |
|
import torch |
|
import signal |
|
import socket |
|
import sys |
|
import json |
|
|
|
import numpy as np |
|
import argparse |
|
import logging |
|
from pathlib import Path |
|
from tqdm import tqdm |
|
import torch.optim as optim |
|
from torch.utils.data import DataLoader |
|
from torch.cuda.amp import GradScaler |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
from pytorch_lightning.lite import LightningLite |
|
|
|
from cotracker.models.evaluation_predictor import EvaluationPredictor |
|
from cotracker.models.core.cotracker.cotracker import CoTracker2 |
|
from cotracker.utils.visualizer import Visualizer |
|
from cotracker.datasets.tap_vid_datasets import TapVidDataset |
|
|
|
from cotracker.datasets.dr_dataset import DynamicReplicaDataset |
|
from cotracker.evaluation.core.evaluator import Evaluator |
|
from cotracker.datasets import kubric_movif_dataset |
|
from cotracker.datasets.utils import collate_fn, collate_fn_train, dataclass_to_cuda_ |
|
from cotracker.models.core.cotracker.losses import sequence_loss, balanced_ce_loss |
|
|
|
|
|
|
|
|
|
def sig_handler(signum, frame): |
|
print("caught signal", signum) |
|
print(socket.gethostname(), "USR1 signal caught.") |
|
|
|
print("requeuing job " + os.environ["SLURM_JOB_ID"]) |
|
os.system("scontrol requeue " + os.environ["SLURM_JOB_ID"]) |
|
sys.exit(-1) |
|
|
|
|
|
def term_handler(signum, frame): |
|
print("bypassing sigterm", flush=True) |
|
|
|
|
|
def fetch_optimizer(args, model): |
|
"""Create the optimizer and learning rate scheduler""" |
|
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8) |
|
scheduler = optim.lr_scheduler.OneCycleLR( |
|
optimizer, |
|
args.lr, |
|
args.num_steps + 100, |
|
pct_start=0.05, |
|
cycle_momentum=False, |
|
anneal_strategy="linear", |
|
) |
|
|
|
return optimizer, scheduler |
|
|
|
|
|
def forward_batch(batch, model, args): |
|
video = batch.video |
|
trajs_g = batch.trajectory |
|
vis_g = batch.visibility |
|
valids = batch.valid |
|
B, T, C, H, W = video.shape |
|
assert C == 3 |
|
B, T, N, D = trajs_g.shape |
|
device = video.device |
|
|
|
__, first_positive_inds = torch.max(vis_g, dim=1) |
|
|
|
|
|
N_rand = N // 4 |
|
|
|
nonzero_inds = [[torch.nonzero(vis_g[b, :, i]) for i in range(N)] for b in range(B)] |
|
|
|
for b in range(B): |
|
rand_vis_inds = torch.cat( |
|
[ |
|
nonzero_row[torch.randint(len(nonzero_row), size=(1,))] |
|
for nonzero_row in nonzero_inds[b] |
|
], |
|
dim=1, |
|
) |
|
first_positive_inds[b] = torch.cat( |
|
[rand_vis_inds[:, :N_rand], first_positive_inds[b : b + 1, N_rand:]], dim=1 |
|
) |
|
|
|
ind_array_ = torch.arange(T, device=device) |
|
ind_array_ = ind_array_[None, :, None].repeat(B, 1, N) |
|
assert torch.allclose( |
|
vis_g[ind_array_ == first_positive_inds[:, None, :]], |
|
torch.ones(1, device=device), |
|
) |
|
gather = torch.gather(trajs_g, 1, first_positive_inds[:, :, None, None].repeat(1, 1, N, D)) |
|
xys = torch.diagonal(gather, dim1=1, dim2=2).permute(0, 2, 1) |
|
|
|
queries = torch.cat([first_positive_inds[:, :, None], xys[:, :, :2]], dim=2) |
|
|
|
predictions, visibility, train_data = model( |
|
video=video, queries=queries, iters=args.train_iters, is_train=True |
|
) |
|
coord_predictions, vis_predictions, valid_mask = train_data |
|
|
|
vis_gts = [] |
|
traj_gts = [] |
|
valids_gts = [] |
|
|
|
S = args.sliding_window_len |
|
for ind in range(0, args.sequence_len - S // 2, S // 2): |
|
vis_gts.append(vis_g[:, ind : ind + S]) |
|
traj_gts.append(trajs_g[:, ind : ind + S]) |
|
valids_gts.append(valids[:, ind : ind + S] * valid_mask[:, ind : ind + S]) |
|
|
|
seq_loss = sequence_loss(coord_predictions, traj_gts, vis_gts, valids_gts, 0.8) |
|
vis_loss = balanced_ce_loss(vis_predictions, vis_gts, valids_gts) |
|
|
|
output = {"flow": {"predictions": predictions[0].detach()}} |
|
output["flow"]["loss"] = seq_loss.mean() |
|
output["visibility"] = { |
|
"loss": vis_loss.mean() * 10.0, |
|
"predictions": visibility[0].detach(), |
|
} |
|
return output |
|
|
|
|
|
def run_test_eval(evaluator, model, dataloaders, writer, step): |
|
model.eval() |
|
for ds_name, dataloader in dataloaders: |
|
visualize_every = 1 |
|
grid_size = 5 |
|
if ds_name == "dynamic_replica": |
|
visualize_every = 8 |
|
grid_size = 0 |
|
elif "tapvid" in ds_name: |
|
visualize_every = 5 |
|
|
|
predictor = EvaluationPredictor( |
|
model.module.module, |
|
grid_size=grid_size, |
|
local_grid_size=0, |
|
single_point=False, |
|
n_iters=6, |
|
) |
|
if torch.cuda.is_available(): |
|
predictor.model = predictor.model.cuda() |
|
|
|
metrics = evaluator.evaluate_sequence( |
|
model=predictor, |
|
test_dataloader=dataloader, |
|
dataset_name=ds_name, |
|
train_mode=True, |
|
writer=writer, |
|
step=step, |
|
visualize_every=visualize_every, |
|
) |
|
|
|
if ds_name == "dynamic_replica" or ds_name == "kubric": |
|
metrics = {f"{ds_name}_avg_{k}": v for k, v in metrics["avg"].items()} |
|
|
|
if "tapvid" in ds_name: |
|
metrics = { |
|
f"{ds_name}_avg_OA": metrics["avg"]["occlusion_accuracy"], |
|
f"{ds_name}_avg_delta": metrics["avg"]["average_pts_within_thresh"], |
|
f"{ds_name}_avg_Jaccard": metrics["avg"]["average_jaccard"], |
|
} |
|
|
|
writer.add_scalars(f"Eval_{ds_name}", metrics, step) |
|
|
|
|
|
class Logger: |
|
SUM_FREQ = 100 |
|
|
|
def __init__(self, model, scheduler): |
|
self.model = model |
|
self.scheduler = scheduler |
|
self.total_steps = 0 |
|
self.running_loss = {} |
|
self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs")) |
|
|
|
def _print_training_status(self): |
|
metrics_data = [ |
|
self.running_loss[k] / Logger.SUM_FREQ for k in sorted(self.running_loss.keys()) |
|
] |
|
training_str = "[{:6d}] ".format(self.total_steps + 1) |
|
metrics_str = ("{:10.4f}, " * len(metrics_data)).format(*metrics_data) |
|
|
|
|
|
logging.info(f"Training Metrics ({self.total_steps}): {training_str + metrics_str}") |
|
|
|
if self.writer is None: |
|
self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs")) |
|
|
|
for k in self.running_loss: |
|
self.writer.add_scalar(k, self.running_loss[k] / Logger.SUM_FREQ, self.total_steps) |
|
self.running_loss[k] = 0.0 |
|
|
|
def push(self, metrics, task): |
|
self.total_steps += 1 |
|
|
|
for key in metrics: |
|
task_key = str(key) + "_" + task |
|
if task_key not in self.running_loss: |
|
self.running_loss[task_key] = 0.0 |
|
|
|
self.running_loss[task_key] += metrics[key] |
|
|
|
if self.total_steps % Logger.SUM_FREQ == Logger.SUM_FREQ - 1: |
|
self._print_training_status() |
|
self.running_loss = {} |
|
|
|
def write_dict(self, results): |
|
if self.writer is None: |
|
self.writer = SummaryWriter(log_dir=os.path.join(args.ckpt_path, "runs")) |
|
|
|
for key in results: |
|
self.writer.add_scalar(key, results[key], self.total_steps) |
|
|
|
def close(self): |
|
self.writer.close() |
|
|
|
|
|
class Lite(LightningLite): |
|
def run(self, args): |
|
def seed_everything(seed: int): |
|
random.seed(seed) |
|
os.environ["PYTHONHASHSEED"] = str(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
seed_everything(0) |
|
|
|
def seed_worker(worker_id): |
|
worker_seed = torch.initial_seed() % 2**32 |
|
np.random.seed(worker_seed) |
|
random.seed(worker_seed) |
|
|
|
g = torch.Generator() |
|
g.manual_seed(0) |
|
if self.global_rank == 0: |
|
eval_dataloaders = [] |
|
if "dynamic_replica" in args.eval_datasets: |
|
eval_dataset = DynamicReplicaDataset( |
|
sample_len=60, only_first_n_samples=1, rgbd_input=False |
|
) |
|
eval_dataloader_dr = torch.utils.data.DataLoader( |
|
eval_dataset, |
|
batch_size=1, |
|
shuffle=False, |
|
num_workers=1, |
|
collate_fn=collate_fn, |
|
) |
|
eval_dataloaders.append(("dynamic_replica", eval_dataloader_dr)) |
|
|
|
if "tapvid_davis_first" in args.eval_datasets: |
|
data_root = os.path.join(args.dataset_root, "tapvid/tapvid_davis/tapvid_davis.pkl") |
|
eval_dataset = TapVidDataset(dataset_type="davis", data_root=data_root) |
|
eval_dataloader_tapvid_davis = torch.utils.data.DataLoader( |
|
eval_dataset, |
|
batch_size=1, |
|
shuffle=False, |
|
num_workers=1, |
|
collate_fn=collate_fn, |
|
) |
|
eval_dataloaders.append(("tapvid_davis", eval_dataloader_tapvid_davis)) |
|
|
|
evaluator = Evaluator(args.ckpt_path) |
|
|
|
visualizer = Visualizer( |
|
save_dir=args.ckpt_path, |
|
pad_value=80, |
|
fps=1, |
|
show_first_frame=0, |
|
tracks_leave_trace=0, |
|
) |
|
|
|
if args.model_name == "cotracker": |
|
model = CoTracker2( |
|
stride=args.model_stride, |
|
window_len=args.sliding_window_len, |
|
add_space_attn=not args.remove_space_attn, |
|
num_virtual_tracks=args.num_virtual_tracks, |
|
model_resolution=args.crop_size, |
|
) |
|
else: |
|
raise ValueError(f"Model {args.model_name} doesn't exist") |
|
|
|
with open(args.ckpt_path + "/meta.json", "w") as file: |
|
json.dump(vars(args), file, sort_keys=True, indent=4) |
|
|
|
model.cuda() |
|
|
|
train_dataset = kubric_movif_dataset.KubricMovifDataset( |
|
data_root=os.path.join(args.dataset_root, "kubric", "kubric_movi_f_tracks"), |
|
crop_size=args.crop_size, |
|
seq_len=args.sequence_len, |
|
traj_per_sample=args.traj_per_sample, |
|
sample_vis_1st_frame=args.sample_vis_1st_frame, |
|
use_augs=not args.dont_use_augs, |
|
) |
|
|
|
train_loader = DataLoader( |
|
train_dataset, |
|
batch_size=args.batch_size, |
|
shuffle=True, |
|
num_workers=args.num_workers, |
|
worker_init_fn=seed_worker, |
|
generator=g, |
|
pin_memory=True, |
|
collate_fn=collate_fn_train, |
|
drop_last=True, |
|
) |
|
|
|
train_loader = self.setup_dataloaders(train_loader, move_to_device=False) |
|
print("LEN TRAIN LOADER", len(train_loader)) |
|
optimizer, scheduler = fetch_optimizer(args, model) |
|
|
|
total_steps = 0 |
|
if self.global_rank == 0: |
|
logger = Logger(model, scheduler) |
|
|
|
folder_ckpts = [ |
|
f |
|
for f in os.listdir(args.ckpt_path) |
|
if not os.path.isdir(f) and f.endswith(".pth") and not "final" in f |
|
] |
|
if len(folder_ckpts) > 0: |
|
ckpt_path = sorted(folder_ckpts)[-1] |
|
ckpt = self.load(os.path.join(args.ckpt_path, ckpt_path)) |
|
logging.info(f"Loading checkpoint {ckpt_path}") |
|
if "model" in ckpt: |
|
model.load_state_dict(ckpt["model"]) |
|
else: |
|
model.load_state_dict(ckpt) |
|
if "optimizer" in ckpt: |
|
logging.info("Load optimizer") |
|
optimizer.load_state_dict(ckpt["optimizer"]) |
|
if "scheduler" in ckpt: |
|
logging.info("Load scheduler") |
|
scheduler.load_state_dict(ckpt["scheduler"]) |
|
if "total_steps" in ckpt: |
|
total_steps = ckpt["total_steps"] |
|
logging.info(f"Load total_steps {total_steps}") |
|
|
|
elif args.restore_ckpt is not None: |
|
assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(".pt") |
|
logging.info("Loading checkpoint...") |
|
|
|
strict = True |
|
state_dict = self.load(args.restore_ckpt) |
|
if "model" in state_dict: |
|
state_dict = state_dict["model"] |
|
|
|
if list(state_dict.keys())[0].startswith("module."): |
|
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} |
|
model.load_state_dict(state_dict, strict=strict) |
|
|
|
logging.info(f"Done loading checkpoint") |
|
model, optimizer = self.setup(model, optimizer, move_to_device=False) |
|
|
|
model.train() |
|
|
|
save_freq = args.save_freq |
|
scaler = GradScaler(enabled=args.mixed_precision) |
|
|
|
should_keep_training = True |
|
global_batch_num = 0 |
|
epoch = -1 |
|
|
|
while should_keep_training: |
|
epoch += 1 |
|
for i_batch, batch in enumerate(tqdm(train_loader)): |
|
batch, gotit = batch |
|
if not all(gotit): |
|
print("batch is None") |
|
continue |
|
dataclass_to_cuda_(batch) |
|
|
|
optimizer.zero_grad() |
|
|
|
assert model.training |
|
|
|
output = forward_batch(batch, model, args) |
|
|
|
loss = 0 |
|
for k, v in output.items(): |
|
if "loss" in v: |
|
loss += v["loss"] |
|
|
|
if self.global_rank == 0: |
|
for k, v in output.items(): |
|
if "loss" in v: |
|
logger.writer.add_scalar( |
|
f"live_{k}_loss", v["loss"].item(), total_steps |
|
) |
|
if "metrics" in v: |
|
logger.push(v["metrics"], k) |
|
if total_steps % save_freq == save_freq - 1: |
|
visualizer.visualize( |
|
video=batch.video.clone(), |
|
tracks=batch.trajectory.clone(), |
|
filename="train_gt_traj", |
|
writer=logger.writer, |
|
step=total_steps, |
|
) |
|
|
|
visualizer.visualize( |
|
video=batch.video.clone(), |
|
tracks=output["flow"]["predictions"][None], |
|
filename="train_pred_traj", |
|
writer=logger.writer, |
|
step=total_steps, |
|
) |
|
|
|
if len(output) > 1: |
|
logger.writer.add_scalar(f"live_total_loss", loss.item(), total_steps) |
|
logger.writer.add_scalar( |
|
f"learning_rate", optimizer.param_groups[0]["lr"], total_steps |
|
) |
|
global_batch_num += 1 |
|
|
|
self.barrier() |
|
|
|
self.backward(scaler.scale(loss)) |
|
|
|
scaler.unscale_(optimizer) |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 10.0) |
|
|
|
scaler.step(optimizer) |
|
scheduler.step() |
|
scaler.update() |
|
total_steps += 1 |
|
if self.global_rank == 0: |
|
if (i_batch >= len(train_loader) - 1) or ( |
|
total_steps == 1 and args.validate_at_start |
|
): |
|
if (epoch + 1) % args.save_every_n_epoch == 0: |
|
ckpt_iter = "0" * (6 - len(str(total_steps))) + str(total_steps) |
|
save_path = Path( |
|
f"{args.ckpt_path}/model_{args.model_name}_{ckpt_iter}.pth" |
|
) |
|
|
|
save_dict = { |
|
"model": model.module.module.state_dict(), |
|
"optimizer": optimizer.state_dict(), |
|
"scheduler": scheduler.state_dict(), |
|
"total_steps": total_steps, |
|
} |
|
|
|
logging.info(f"Saving file {save_path}") |
|
self.save(save_dict, save_path) |
|
|
|
if (epoch + 1) % args.evaluate_every_n_epoch == 0 or ( |
|
args.validate_at_start and epoch == 0 |
|
): |
|
run_test_eval( |
|
evaluator, |
|
model, |
|
eval_dataloaders, |
|
logger.writer, |
|
total_steps, |
|
) |
|
model.train() |
|
torch.cuda.empty_cache() |
|
|
|
self.barrier() |
|
if total_steps > args.num_steps: |
|
should_keep_training = False |
|
break |
|
if self.global_rank == 0: |
|
print("FINISHED TRAINING") |
|
|
|
PATH = f"{args.ckpt_path}/{args.model_name}_final.pth" |
|
torch.save(model.module.module.state_dict(), PATH) |
|
run_test_eval(evaluator, model, eval_dataloaders, logger.writer, total_steps) |
|
logger.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
signal.signal(signal.SIGUSR1, sig_handler) |
|
signal.signal(signal.SIGTERM, term_handler) |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_name", default="cotracker", help="model name") |
|
parser.add_argument("--restore_ckpt", help="path to restore a checkpoint") |
|
parser.add_argument("--ckpt_path", help="path to save checkpoints") |
|
parser.add_argument( |
|
"--batch_size", type=int, default=4, help="batch size used during training." |
|
) |
|
parser.add_argument("--num_nodes", type=int, default=1) |
|
parser.add_argument("--num_workers", type=int, default=10, help="number of dataloader workers") |
|
|
|
parser.add_argument("--mixed_precision", action="store_true", help="use mixed precision") |
|
parser.add_argument("--lr", type=float, default=0.0005, help="max learning rate.") |
|
parser.add_argument("--wdecay", type=float, default=0.00001, help="Weight decay in optimizer.") |
|
parser.add_argument( |
|
"--num_steps", type=int, default=200000, help="length of training schedule." |
|
) |
|
parser.add_argument( |
|
"--evaluate_every_n_epoch", |
|
type=int, |
|
default=1, |
|
help="evaluate during training after every n epochs, after every epoch by default", |
|
) |
|
parser.add_argument( |
|
"--save_every_n_epoch", |
|
type=int, |
|
default=1, |
|
help="save checkpoints during training after every n epochs, after every epoch by default", |
|
) |
|
parser.add_argument( |
|
"--validate_at_start", |
|
action="store_true", |
|
help="whether to run evaluation before training starts", |
|
) |
|
parser.add_argument( |
|
"--save_freq", |
|
type=int, |
|
default=100, |
|
help="frequency of trajectory visualization during training", |
|
) |
|
parser.add_argument( |
|
"--traj_per_sample", |
|
type=int, |
|
default=768, |
|
help="the number of trajectories to sample for training", |
|
) |
|
parser.add_argument( |
|
"--dataset_root", type=str, help="path lo all the datasets (train and eval)" |
|
) |
|
|
|
parser.add_argument( |
|
"--train_iters", |
|
type=int, |
|
default=4, |
|
help="number of updates to the disparity field in each forward pass.", |
|
) |
|
parser.add_argument("--sequence_len", type=int, default=8, help="train sequence length") |
|
parser.add_argument( |
|
"--eval_datasets", |
|
nargs="+", |
|
default=["tapvid_davis_first"], |
|
help="what datasets to use for evaluation", |
|
) |
|
|
|
parser.add_argument( |
|
"--remove_space_attn", |
|
action="store_true", |
|
help="remove space attention from CoTracker", |
|
) |
|
parser.add_argument( |
|
"--num_virtual_tracks", |
|
type=int, |
|
default=None, |
|
help="stride of the CoTracker feature network", |
|
) |
|
parser.add_argument( |
|
"--dont_use_augs", |
|
action="store_true", |
|
help="don't apply augmentations during training", |
|
) |
|
parser.add_argument( |
|
"--sample_vis_1st_frame", |
|
action="store_true", |
|
help="only sample trajectories with points visible on the first frame", |
|
) |
|
parser.add_argument( |
|
"--sliding_window_len", |
|
type=int, |
|
default=8, |
|
help="length of the CoTracker sliding window", |
|
) |
|
parser.add_argument( |
|
"--model_stride", |
|
type=int, |
|
default=8, |
|
help="stride of the CoTracker feature network", |
|
) |
|
parser.add_argument( |
|
"--crop_size", |
|
type=int, |
|
nargs="+", |
|
default=[384, 512], |
|
help="crop videos to this resolution during training", |
|
) |
|
parser.add_argument( |
|
"--eval_max_seq_len", |
|
type=int, |
|
default=1000, |
|
help="maximum length of evaluation videos", |
|
) |
|
args = parser.parse_args() |
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s", |
|
) |
|
|
|
Path(args.ckpt_path).mkdir(exist_ok=True, parents=True) |
|
from pytorch_lightning.strategies import DDPStrategy |
|
|
|
Lite( |
|
strategy=DDPStrategy(find_unused_parameters=False), |
|
devices="auto", |
|
accelerator="gpu", |
|
precision=32, |
|
num_nodes=args.num_nodes, |
|
).run(args) |
|
|