Spaces:
Running
Running
from PIL import Image, ImageChops | |
import torch | |
from torchvision import transforms | |
from transformers import AutoModelForImageSegmentation | |
from moviepy.editor import VideoFileClip, ImageSequenceClip | |
import numpy as np | |
from tqdm import tqdm | |
from uuid import uuid1 | |
import os | |
# Load the model | |
model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True) | |
torch.set_float32_matmul_precision('high') # Set precision | |
model.to('cuda') | |
model.eval() | |
# Data settings | |
image_size = (1024, 1024) | |
transform_image = transforms.Compose([ | |
transforms.Resize(image_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
def remove_background(image): | |
"""Remove background from a single image.""" | |
input_images = transform_image(image).unsqueeze(0).to('cuda') | |
# Prediction | |
with torch.no_grad(): | |
preds = model(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
# Convert the prediction to a mask | |
mask = (pred * 255).byte() # Convert to 0-255 range | |
mask_pil = transforms.ToPILImage()(mask).convert("L") | |
mask_resized = mask_pil.resize(image.size, Image.LANCZOS) | |
# Apply the mask to the image | |
image.putalpha(mask_resized) | |
return image, mask_resized | |
def process_video(input_video_path, output_video_path): | |
"""Process a video to remove the background from each frame.""" | |
# Load the video | |
video_clip = VideoFileClip(input_video_path) | |
# Process each frame | |
frames = [] | |
for frame in tqdm(video_clip.iter_frames()): | |
frame_pil = Image.fromarray(frame) | |
frame_no_bg, mask_resized = remove_background(frame_pil) | |
path = "{}.png".format(uuid1()) | |
frame_no_bg.save(path) | |
frame_no_bg = Image.open(path).convert("RGBA") | |
os.remove(path) | |
# Convert mask_resized to RGBA mode | |
mask_resized_rgba = mask_resized.convert("RGBA") | |
# Apply the mask using ImageChops.multiply | |
output = ImageChops.multiply(frame_no_bg, mask_resized_rgba) | |
output_np = np.array(output) | |
frames.append(output_np) | |
# Save the processed frames as a new video | |
processed_clip = ImageSequenceClip(frames, fps=video_clip.fps) | |
processed_clip.write_videofile(output_video_path, codec='libx264', ffmpeg_params=['-pix_fmt', 'yuva420p']) | |
if __name__ == "__main__": | |
from IPython import display | |
# Example usage | |
input_video_path = "300_A_car_is_running_on_the_road.mp4" # Replace with your video path | |
output_video_path = "300_A_car_is_running_on_the_road_no_bg.mp4" | |
process_video(input_video_path, output_video_path) | |
display.Video("300_A_car_is_running_on_the_road_no_bg.mp4") | |
pass | |