''' python colorflow_cli.py \ --input_image ./input.jpg \ --reference_images ./ref1.jpg ./ref2.jpg \ --output_dir ./results \ --input_style Sketch \ --resolution 640x640 \ --seed 123 \ --num_inference_steps 20 ''' # colorflow_cli.py from app_func import * import argparse import torch from PIL import Image import os import logging # 原文件中的必要导入和函数定义(需保留原文件中的核心逻辑) # ... [保留原文件中的模型加载、extract_line_image、colorize_image等函数] ... def parse_args(): parser = argparse.ArgumentParser(description="ColorFlow命令行图像上色工具") parser.add_argument("--input_image", type=str, required=True, help="输入图像路径") parser.add_argument("--reference_images", type=str, nargs='+', required=True, help="参考图像路径列表") parser.add_argument("--output_dir", type=str, default="./output", help="输出目录") parser.add_argument("--input_style", type=str, default="GrayImage(ScreenStyle)", choices=["GrayImage(ScreenStyle)", "Sketch"], help="输入样式类型") parser.add_argument("--resolution", type=str, default="640x640", choices=["640x640", "512x800", "800x512"], help="分辨率设置") parser.add_argument("--seed", type=int, default=0, help="随机种子") parser.add_argument("--num_inference_steps", type=int, default=10, help="推理步数") return parser.parse_args() def save_image(image: Image.Image, path: str, format: str = "PNG") -> None: """安全保存图像并处理异常""" try: image.save(path, format=format) logging.info(f"成功保存图像至: {path}") except Exception as e: logging.error(f"保存图像失败: {str(e)}") raise def main(): args = parse_args() os.makedirs(args.output_dir, exist_ok=True) # 初始化模型 global cur_input_style, pipeline, MultiResNetModel cur_input_style = None load_ckpt(args.input_style) # 预处理输入图像 input_img = Image.open(args.input_image).convert("RGB") input_context, extracted_line, _ = extract_line_image(input_img, args.input_style, args.resolution) # 执行颜色化并获取全部结果 high_res_img, up_img, raw_output, preprocessed_bw = colorize_image( VAE_input=extracted_line, input_context=input_context, reference_images=args.reference_images, resolution=args.resolution, seed=args.seed, input_style=args.input_style, num_inference_steps=args.num_inference_steps ) # 保存所有结果 save_image(high_res_img, os.path.join(args.output_dir, "colorized_result.png")) save_image(up_img, os.path.join(args.output_dir, "upsampled_intermediate.png")) save_image(raw_output, os.path.join(args.output_dir, "raw_generated_output.png")) save_image(preprocessed_bw, os.path.join(args.output_dir, "preprocessed_bw.png")) if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") main()