Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
'''
|
2 |
-
pip install extcolors
|
3 |
-
'''
|
4 |
-
|
5 |
import os
|
6 |
import tensorflow as tf
|
7 |
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
|
@@ -10,7 +6,6 @@ import PIL.Image
|
|
10 |
import gradio as gr
|
11 |
import tensorflow_hub as hub
|
12 |
import matplotlib.pyplot as plt
|
13 |
-
#from real_esrgan_app import *
|
14 |
|
15 |
import gradio as gr
|
16 |
import requests
|
@@ -34,14 +29,6 @@ import pathlib
|
|
34 |
|
35 |
API_TOKEN = os.environ.get("HF_READ_TOKEN")
|
36 |
|
37 |
-
'''
|
38 |
-
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
39 |
-
prompt_df = dataset["train"].to_pandas()
|
40 |
-
prompt_df = pd.read_csv("Stable-Diffusion-Prompts.csv")
|
41 |
-
'''
|
42 |
-
|
43 |
-
#DEFAULT_MODEL = "stabilityai/stable-diffusion-2-1"
|
44 |
-
#DEFAULT_PROMPT = "1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt"
|
45 |
DEFAULT_PROMPT = "X go to Istanbul"
|
46 |
DEFAULT_ROLE = "Superman"
|
47 |
DEFAULT_BOOK_COVER = "book_cover_dir/Blank.jpg"
|
@@ -60,67 +47,27 @@ def tensor_to_image(tensor):
|
|
60 |
def perform_neural_transfer(content_image_input, style_image_input, hub_module = hub_module):
|
61 |
content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255.
|
62 |
content_image = tf.image.resize(content_image, (400, 600))
|
63 |
-
|
64 |
-
#style_image_input = style_urls[style_image_input]
|
65 |
-
#style_image_input = plt.imread(style_image_input)
|
66 |
style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255.
|
67 |
-
|
68 |
style_image = tf.image.resize(style_image, (256, 256))
|
69 |
-
|
70 |
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
|
71 |
stylized_image = outputs[0]
|
72 |
-
|
73 |
stylized_image = tensor_to_image(stylized_image)
|
74 |
content_image_input = tensor_to_image(content_image_input)
|
75 |
stylized_image = stylized_image.resize(content_image_input.size)
|
76 |
return stylized_image
|
77 |
-
'''
|
78 |
-
print("super_resolution_type :")
|
79 |
-
print(super_resolution_type)
|
80 |
-
#print(super_resolution_type.value)
|
81 |
-
|
82 |
-
if super_resolution_type not in ["base", "anime"]:
|
83 |
-
return stylized_image
|
84 |
-
else:
|
85 |
-
print("call else :")
|
86 |
-
stylized_image = inference(stylized_image, super_resolution_type)
|
87 |
-
return stylized_image
|
88 |
-
'''
|
89 |
|
90 |
list_models = [
|
91 |
-
#"SDXL-1.0",
|
92 |
"Pixel-Art-XL",
|
93 |
"SD-1.5",
|
94 |
"OpenJourney-V4",
|
95 |
"Anything-V4",
|
96 |
"Disney-Pixar-Cartoon",
|
97 |
"Dalle-3-XL",
|
98 |
-
#"Midjourney-V4-XL",
|
99 |
]
|
100 |
|
101 |
-
#list_prompts = get_samples()
|
102 |
|
103 |
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
|
104 |
seed=None, API_TOKEN = API_TOKEN):
|
105 |
-
|
106 |
-
'''
|
107 |
-
if current_model == "SD-1.5":
|
108 |
-
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
|
109 |
-
elif current_model == "SDXL-1.0":
|
110 |
-
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
111 |
-
elif current_model == "OpenJourney-V4":
|
112 |
-
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
|
113 |
-
elif current_model == "Anything-V4":
|
114 |
-
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
|
115 |
-
elif current_model == "Disney-Pixar-Cartoon":
|
116 |
-
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
|
117 |
-
elif current_model == "Pixel-Art-XL":
|
118 |
-
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
|
119 |
-
elif current_model == "Dalle-3-XL":
|
120 |
-
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
|
121 |
-
elif current_model == "Midjourney-V4-XL":
|
122 |
-
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
|
123 |
-
'''
|
124 |
if current_model == "SD-1.5":
|
125 |
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
|
126 |
elif current_model == "OpenJourney-V4":
|
@@ -324,20 +271,6 @@ def add_caption_on_image(input_image, caption, marg_ratio = 0.15, row_token_num
|
|
324 |
marg_size = int(marg_ratio * max_image_size)
|
325 |
colors, pixel_count = extcolors.extract_from_image(input_image)
|
326 |
input_image = add_margin(input_image, marg_size, 0, 0, marg_size, colors[0][0])
|
327 |
-
'''
|
328 |
-
tmp_name = "{}.png".format(uuid1())
|
329 |
-
input_image.save(tmp_name)
|
330 |
-
ImageCaptioner.add_captions(tmp_name,
|
331 |
-
caption,
|
332 |
-
overwrite = 1,
|
333 |
-
size = int(marg_size / 4),
|
334 |
-
align = "TOP_LEFT",
|
335 |
-
output = tmp_name,
|
336 |
-
color = "black",
|
337 |
-
)
|
338 |
-
output_image = Image.open(tmp_name)
|
339 |
-
os.remove(tmp_name)
|
340 |
-
'''
|
341 |
font = ImageFont.truetype("DejaVuSerif-Italic.ttf" ,int(marg_size / 4))
|
342 |
caption_token_list = list(map(lambda x: x.strip() ,caption.split(" ")))
|
343 |
caption_list = list(map(" ".join ,batch_as_list(caption_token_list, row_token_num)))
|
@@ -349,7 +282,6 @@ def add_caption_on_image(input_image, caption, marg_ratio = 0.15, row_token_num
|
|
349 |
(line_num + 1) * 1.1
|
350 |
)))
|
351 |
draw.text(position, line_caption, fill="black", font = font)
|
352 |
-
|
353 |
return input_image
|
354 |
|
355 |
|
@@ -404,26 +336,6 @@ def make_video_from_image_list(image_list, video_name = "ppt.avi"):
|
|
404 |
generate_video(image_list, video_name = video_name)
|
405 |
return video_name
|
406 |
|
407 |
-
'''
|
408 |
-
style_transfer_client = Client("https://svjack-super-resolution-neural-style-transfer.hf.space")
|
409 |
-
def style_transfer_func(content_img, style_img, style_transfer_client = style_transfer_client):
|
410 |
-
from uuid import uuid1
|
411 |
-
assert hasattr(content_img, "save")
|
412 |
-
assert hasattr(style_img, "save")
|
413 |
-
content_im_name = "{}.png".format(uuid1())
|
414 |
-
style_im_name = "{}.png".format(uuid1())
|
415 |
-
content_img.save(content_im_name)
|
416 |
-
style_img.save(style_im_name)
|
417 |
-
out = style_transfer_client.predict(
|
418 |
-
content_im_name,
|
419 |
-
style_im_name,
|
420 |
-
"none",
|
421 |
-
fn_index=1
|
422 |
-
)
|
423 |
-
os.remove(content_im_name)
|
424 |
-
os.remove(style_im_name)
|
425 |
-
return Image.open(out)
|
426 |
-
'''
|
427 |
def style_transfer_func(content_img, style_img):
|
428 |
assert hasattr(content_img, "save")
|
429 |
assert hasattr(style_img, "save")
|
@@ -469,10 +381,7 @@ def gen_images_from_event_fact(current_model, event_fact = DEFAULT_PROMPT, role_
|
|
469 |
|
470 |
def image_click(images, evt: gr.SelectData,
|
471 |
):
|
472 |
-
#print(images)
|
473 |
-
#print(evt.index)
|
474 |
img_selected = images[evt.index][0]["name"]
|
475 |
-
#print(img_selected)
|
476 |
return img_selected
|
477 |
|
478 |
def get_book_covers():
|
@@ -496,23 +405,16 @@ with gr.Blocks(css=".caption-label {display:none}") as demo:
|
|
496 |
with gr.Column(elem_id="prompt-container"):
|
497 |
current_model = gr.Dropdown(label="Current Model", choices=list_models, value="Pixel-Art-XL")
|
498 |
style_reference_input_gallery = gr.Gallery(get_book_covers(),
|
499 |
-
|
500 |
-
|
501 |
-
|
|
|
502 |
with gr.Column(elem_id="prompt-container"):
|
503 |
-
#with gr.Row(elem_id="prompt-container"):
|
504 |
style_reference_input_image = gr.Image(
|
505 |
label = "StoryBook Cover (you can upload yourself or click from left gallery)",
|
506 |
-
#width = 512,
|
507 |
value = DEFAULT_BOOK_COVER,
|
508 |
interactive = True,
|
509 |
)
|
510 |
-
'''
|
511 |
-
super_resolution_type = gr.Radio(choices = ["SD(Standard Definition)" ,"HD(High Definition)"],
|
512 |
-
value="SD(Standard Definition)", label="Story Video Quality",
|
513 |
-
interactive = True)
|
514 |
-
'''
|
515 |
-
|
516 |
with gr.Row():
|
517 |
text_prompt = gr.Textbox(label="Event Prompt", placeholder=DEFAULT_PROMPT,
|
518 |
lines=1, elem_id="prompt-text-input", value = DEFAULT_PROMPT,
|
@@ -522,14 +424,12 @@ with gr.Blocks(css=".caption-label {display:none}") as demo:
|
|
522 |
elem_id="prompt-text-input", value = DEFAULT_ROLE,
|
523 |
info = "You should set the Role (X) with some famous man (like: Confucius Superman)"
|
524 |
)
|
|
|
525 |
text_button = gr.Button("Generate", variant='primary', elem_id="gen-button")
|
526 |
|
527 |
with gr.Row():
|
528 |
-
|
529 |
-
#image_output = gr.Gallery(label="Output Images", elem_id="gallery")
|
530 |
-
video_output = gr.Video(label = "Story Video", elem_id="gallery")
|
531 |
|
532 |
-
#text_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
|
533 |
style_reference_input_gallery.select(
|
534 |
image_click, style_reference_input_gallery, style_reference_input_image
|
535 |
)
|
@@ -537,7 +437,5 @@ with gr.Blocks(css=".caption-label {display:none}") as demo:
|
|
537 |
text_button.click(gen_images_from_event_fact, inputs=[current_model, text_prompt, role_name, style_reference_input_image],
|
538 |
outputs=video_output)
|
539 |
|
540 |
-
#select_button.click(generate_txt2img, inputs=[current_model, select_prompt, negative_prompt, image_style], outputs=image_output)
|
541 |
-
#demo.load(get_params, None, select_prompt)
|
542 |
|
543 |
demo.launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import tensorflow as tf
|
3 |
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
|
|
|
6 |
import gradio as gr
|
7 |
import tensorflow_hub as hub
|
8 |
import matplotlib.pyplot as plt
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
import requests
|
|
|
29 |
|
30 |
API_TOKEN = os.environ.get("HF_READ_TOKEN")
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
DEFAULT_PROMPT = "X go to Istanbul"
|
33 |
DEFAULT_ROLE = "Superman"
|
34 |
DEFAULT_BOOK_COVER = "book_cover_dir/Blank.jpg"
|
|
|
47 |
def perform_neural_transfer(content_image_input, style_image_input, hub_module = hub_module):
|
48 |
content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255.
|
49 |
content_image = tf.image.resize(content_image, (400, 600))
|
|
|
|
|
|
|
50 |
style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255.
|
|
|
51 |
style_image = tf.image.resize(style_image, (256, 256))
|
|
|
52 |
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
|
53 |
stylized_image = outputs[0]
|
|
|
54 |
stylized_image = tensor_to_image(stylized_image)
|
55 |
content_image_input = tensor_to_image(content_image_input)
|
56 |
stylized_image = stylized_image.resize(content_image_input.size)
|
57 |
return stylized_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
list_models = [
|
|
|
60 |
"Pixel-Art-XL",
|
61 |
"SD-1.5",
|
62 |
"OpenJourney-V4",
|
63 |
"Anything-V4",
|
64 |
"Disney-Pixar-Cartoon",
|
65 |
"Dalle-3-XL",
|
|
|
66 |
]
|
67 |
|
|
|
68 |
|
69 |
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
|
70 |
seed=None, API_TOKEN = API_TOKEN):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if current_model == "SD-1.5":
|
72 |
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
|
73 |
elif current_model == "OpenJourney-V4":
|
|
|
271 |
marg_size = int(marg_ratio * max_image_size)
|
272 |
colors, pixel_count = extcolors.extract_from_image(input_image)
|
273 |
input_image = add_margin(input_image, marg_size, 0, 0, marg_size, colors[0][0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
font = ImageFont.truetype("DejaVuSerif-Italic.ttf" ,int(marg_size / 4))
|
275 |
caption_token_list = list(map(lambda x: x.strip() ,caption.split(" ")))
|
276 |
caption_list = list(map(" ".join ,batch_as_list(caption_token_list, row_token_num)))
|
|
|
282 |
(line_num + 1) * 1.1
|
283 |
)))
|
284 |
draw.text(position, line_caption, fill="black", font = font)
|
|
|
285 |
return input_image
|
286 |
|
287 |
|
|
|
336 |
generate_video(image_list, video_name = video_name)
|
337 |
return video_name
|
338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
def style_transfer_func(content_img, style_img):
|
340 |
assert hasattr(content_img, "save")
|
341 |
assert hasattr(style_img, "save")
|
|
|
381 |
|
382 |
def image_click(images, evt: gr.SelectData,
|
383 |
):
|
|
|
|
|
384 |
img_selected = images[evt.index][0]["name"]
|
|
|
385 |
return img_selected
|
386 |
|
387 |
def get_book_covers():
|
|
|
405 |
with gr.Column(elem_id="prompt-container"):
|
406 |
current_model = gr.Dropdown(label="Current Model", choices=list_models, value="Pixel-Art-XL")
|
407 |
style_reference_input_gallery = gr.Gallery(get_book_covers(),
|
408 |
+
height = 768 + 64 + 32,
|
409 |
+
label = "StoryBook Cover (click to use)",
|
410 |
+
object_fit = "contain"
|
411 |
+
)
|
412 |
with gr.Column(elem_id="prompt-container"):
|
|
|
413 |
style_reference_input_image = gr.Image(
|
414 |
label = "StoryBook Cover (you can upload yourself or click from left gallery)",
|
|
|
415 |
value = DEFAULT_BOOK_COVER,
|
416 |
interactive = True,
|
417 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
with gr.Row():
|
419 |
text_prompt = gr.Textbox(label="Event Prompt", placeholder=DEFAULT_PROMPT,
|
420 |
lines=1, elem_id="prompt-text-input", value = DEFAULT_PROMPT,
|
|
|
424 |
elem_id="prompt-text-input", value = DEFAULT_ROLE,
|
425 |
info = "You should set the Role (X) with some famous man (like: Confucius Superman)"
|
426 |
)
|
427 |
+
with gr.Row():
|
428 |
text_button = gr.Button("Generate", variant='primary', elem_id="gen-button")
|
429 |
|
430 |
with gr.Row():
|
431 |
+
video_output = gr.Video(label = "Story Video", elem_id="gallery", height = 512,)
|
|
|
|
|
432 |
|
|
|
433 |
style_reference_input_gallery.select(
|
434 |
image_click, style_reference_input_gallery, style_reference_input_image
|
435 |
)
|
|
|
437 |
text_button.click(gen_images_from_event_fact, inputs=[current_model, text_prompt, role_name, style_reference_input_image],
|
438 |
outputs=video_output)
|
439 |
|
|
|
|
|
440 |
|
441 |
demo.launch(show_api=False)
|