import os
import tensorflow as tf
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
import numpy as np
import PIL.Image
import gradio as gr
import tensorflow_hub as hub
import matplotlib.pyplot as plt
import gradio as gr
import requests
import io
import random
import os
from PIL import Image, ImageDraw, ImageFont
from datasets import load_dataset
import pandas as pd
from time import sleep
from tqdm import tqdm
import extcolors
from gradio_client import Client
import cv2
import numpy as np
import glob
import pathlib
API_TOKEN = os.environ.get("HF_READ_TOKEN")
DEFAULT_PROMPT = "X go to Istanbul"
DEFAULT_ROLE = "Superman"
DEFAULT_BOOK_COVER = "book_cover_dir/Blank.png"
hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
def tensor_to_image(tensor):
tensor = tensor*255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor)>3:
assert tensor.shape[0] == 1
tensor = tensor[0]
return PIL.Image.fromarray(tensor)
def perform_neural_transfer(content_image_input, style_image_input, hub_module = hub_module):
content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255.
content_image = tf.image.resize(content_image, (400, 600))
style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255.
style_image = tf.image.resize(style_image, (256, 256))
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
stylized_image = outputs[0]
stylized_image = tensor_to_image(stylized_image)
content_image_input = tensor_to_image(content_image_input)
stylized_image = stylized_image.resize(content_image_input.size)
return stylized_image
list_models = [
"Pixel-Art-XL",
"SD-1.5",
"OpenJourney-V4",
"Anything-V4",
"Disney-Pixar-Cartoon",
"Dalle-3-XL",
]
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
seed=None, API_TOKEN = API_TOKEN):
if current_model == "SD-1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "OpenJourney-V4":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything-V4":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney-Pixar-Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
#API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if type(prompt) != type(""):
prompt = DEFAULT_PROMPT
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
from huggingface_hub import InferenceClient
import gradio as gr
import pandas as pd
import numpy as np
import os
event_reasoning_df = pd.DataFrame(
[['Use the following events as a background to answer questions related to the cause and effect of time.', 'Ok'],
['What are the necessary preconditions for the next event?:X had a big meal.', 'X placed an order'],
['What could happen after the next event?:X had a big meal.', 'X becomes fat'],
['What is the motivation for the next event?:X had a big meal.', 'X is hungry'],
['What are your feelings after the following event?:X had a big meal.', "X tastes good"],
['What are the necessary preconditions for the next event?:X met his favorite star.', 'X bought a ticket'],
['What could happen after the next event?:X met his favorite star.', 'X is motivated'],
['What is the motivation for the next event?:X met his favorite star.', 'X wants to have some entertainment'],
['What are your feelings after the following event?:X met his favorite star.', "X is in a happy mood"],
['What are the necessary preconditions for the next event?: X to cheat', 'X has evil intentions'],
['What could happen after the next event?:X to cheat', 'X is accused'],
['What is the motivation for the next event?:X to cheat', 'X wants to get something for nothing'],
['What are your feelings after the following event?:X to cheat', "X is starving and freezing in prison"],
['What could happen after the next event?:X go to Istanbul', ''],
],
columns = ["User", "Assistant"]
)
Mistral_7B_client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
NEED_PREFIX = 'What are the necessary preconditions for the next event?'
EFFECT_PREFIX = 'What could happen after the next event?'
INTENT_PREFIX = 'What is the motivation for the next event?'
REACT_PREFIX = 'What are your feelings after the following event?'
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, client = Mistral_7B_client,
temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
hist = event_reasoning_df.iloc[:-1, :].apply(
lambda x: (x["User"], x["Assistant"]), axis = 1
)
def produce_4_event(event_fact, hist = hist):
NEED_PREFIX_prompt = "{}:{}".format(NEED_PREFIX, event_fact)
EFFECT_PREFIX_prompt = "{}:{}".format(EFFECT_PREFIX, event_fact)
INTENT_PREFIX_prompt = "{}:{}".format(INTENT_PREFIX, event_fact)
REACT_PREFIX_prompt = "{}:{}".format(REACT_PREFIX, event_fact)
NEED_PREFIX_output = list(generate(NEED_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
EFFECT_PREFIX_output = list(generate(EFFECT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
INTENT_PREFIX_output = list(generate(INTENT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
REACT_PREFIX_output = list(generate(REACT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
NEED_PREFIX_output, EFFECT_PREFIX_output, INTENT_PREFIX_output, REACT_PREFIX_output = map(lambda x: x.replace("", ""), [NEED_PREFIX_output, EFFECT_PREFIX_output, INTENT_PREFIX_output, REACT_PREFIX_output])
return {
NEED_PREFIX: NEED_PREFIX_output,
EFFECT_PREFIX: EFFECT_PREFIX_output,
INTENT_PREFIX: INTENT_PREFIX_output,
REACT_PREFIX: REACT_PREFIX_output,
}
def transform_4_event_as_sd_prompts(event_fact ,event_reasoning_dict, role_name = "superman"):
req = {}
for k, v in event_reasoning_dict.items():
if type(role_name) == type("") and role_name.strip():
v_ = v.replace("X", role_name)
else:
v_ = v
req[k] = list(generate("Transform this as a prompt in stable diffusion: {}".\
format(v_),
history = [], max_new_tokens = 2048))[-1].replace("", "")
event_fact_ = event_fact.replace("X", role_name)
req["EVENT_FACT"] = list(generate("Transform this as a prompt in stable diffusion: {}".\
format(event_fact_),
history = [], max_new_tokens = 2048))[-1].replace("", "")
req_list = [
req[INTENT_PREFIX], req[NEED_PREFIX],
req["EVENT_FACT"],
req[REACT_PREFIX], req[EFFECT_PREFIX]
]
caption_list = [
event_reasoning_dict[INTENT_PREFIX], event_reasoning_dict[NEED_PREFIX],
event_fact,
event_reasoning_dict[REACT_PREFIX], event_reasoning_dict[EFFECT_PREFIX]
]
caption_list = list(map(lambda x: x.replace("X", role_name), caption_list))
return caption_list ,req_list
def batch_as_list(input_, batch_size = 3):
req = []
for ele in input_:
if not req or len(req[-1]) >= batch_size:
req.append([ele])
else:
req[-1].append(ele)
return req
def add_margin(pil_img, top, right, bottom, left, color):
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
def add_caption_on_image(input_image, caption, marg_ratio = 0.15, row_token_num = 6):
from uuid import uuid1
assert hasattr(input_image, "save")
max_image_size = max(input_image.size)
marg_size = int(marg_ratio * max_image_size)
colors, pixel_count = extcolors.extract_from_image(input_image)
input_image = add_margin(input_image, marg_size, 0, 0, marg_size, colors[0][0])
font = ImageFont.truetype("DejaVuSerif-Italic.ttf" ,int(marg_size / 4))
caption_token_list = list(map(lambda x: x.strip() ,caption.split(" ")))
caption_list = list(map(" ".join ,batch_as_list(caption_token_list, row_token_num)))
draw = ImageDraw.Draw(input_image)
for line_num ,line_caption in enumerate(caption_list):
position = (
int(marg_size / 4) * (line_num + 1) * 1.1 ,
(int(marg_size / 4) * (
(line_num + 1) * 1.1
)))
draw.text(position, line_caption, fill="black", font = font)
return input_image
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height)))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width)))
return result
def generate_video(images, video_name = 'ppt.avi'):
import cv2
from uuid import uuid1
im_names = []
for im in images:
name = "{}.png".format(uuid1())
im.save(name)
im_names.append(name)
frame = cv2.imread(im_names[0])
# setting the frame width, height width
# the width, height of first image
height, width, layers = frame.shape
video = cv2.VideoWriter(video_name, 0, 1, (width, height))
# Appending the images to the video one by one
for name in im_names:
video.write(cv2.imread(name))
os.remove(name)
# Deallocating memories taken for window creation
#cv2.destroyAllWindows()
video.release() # releasing the video generated
def make_video_from_image_list(image_list, video_name = "ppt.avi"):
if os.path.exists(video_name):
os.remove(video_name)
assert all(map(lambda x: hasattr(x, "save"), image_list))
max_size = list(map(max ,zip(*map(lambda x: x.size, image_list))))
max_size = max(max_size)
image_list = list(map(lambda x: expand2square(x,
extcolors.extract_from_image(x)[0][0][0]
).resize((max_size, max_size)), image_list))
generate_video(image_list, video_name = video_name)
return video_name
def style_transfer_func(content_img, style_img):
assert hasattr(content_img, "save")
assert hasattr(style_img, "save")
colors, pixel_count = extcolors.extract_from_image(style_img)
if colors and colors[0][0] == (255, 255, 255) and (colors[0][1] / sum(map(lambda t2: t2[1] ,colors)) > 0.95):
return content_img
content_image_input = np.asarray(content_img)
style_image_input = np.asarray(style_img)
out = perform_neural_transfer(content_image_input, style_image_input)
assert hasattr(out, "save")
return out
def gen_images_from_event_fact(current_model, event_fact = DEFAULT_PROMPT, role_name = DEFAULT_ROLE,
style_pic = None
):
event_reasoning_dict = produce_4_event(event_fact)
caption_list ,event_reasoning_sd_list = transform_4_event_as_sd_prompts(event_fact ,
event_reasoning_dict,
role_name = role_name
)
img_list = []
for prompt in tqdm(event_reasoning_sd_list):
im = generate_txt2img(current_model, prompt, is_negative=False, image_style="None style")
img_list.append(im)
sleep(2)
img_list = list(filter(lambda x: hasattr(x, "save"), img_list))
if style_pic is not None and hasattr(style_pic, "size"):
style_pic = Image.fromarray(style_pic.astype(np.uint8))
print("perform styling.....")
img_list_ = []
for x in tqdm(img_list):
img_list_.append(style_transfer_func(x, style_pic))
img_list = img_list_
img_list = list(map(lambda t2: add_caption_on_image(t2[0], t2[1]) ,zip(*[img_list, caption_list])))
img_mid = img_list[2]
img_list_reordered = [img_mid]
for ele in img_list:
if ele not in img_list_reordered:
img_list_reordered.append(ele)
video_path = make_video_from_image_list(img_list_reordered)
return video_path
def image_click(images, evt: gr.SelectData,
):
img_selected = images[evt.index][0]["name"]
return img_selected
def get_book_covers():
covers = pd.Series(
list(pathlib.Path("book_cover_dir").rglob("*.jpg")) + \
list(pathlib.Path("book_cover_dir").rglob("*.png")) + \
list(pathlib.Path("book_cover_dir").rglob("*.jpeg"))
).map(str).map(lambda x: np.nan if x.split("/")[-1].startswith("_") else x).dropna().map(
lambda x: (x, "".join(x.split(".")[:-1]).split("/")[-1])
).values.tolist()
covers = sorted(covers, key = lambda t2: int(DEFAULT_BOOK_COVER in t2[0]), reverse = True)
return covers
with gr.Blocks(css=".caption-label {display:none}") as demo:
favicon = ''
gr.Markdown(
f"""