File size: 7,096 Bytes
e21f690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897452e
e21f690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85d15d
 
e21f690
 
 
 
 
 
 
 
 
 
897452e
e21f690
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
'''
from diffusers import utils
from diffusers.utils import deprecation_utils
from diffusers.models import cross_attention
utils.deprecate = lambda *arg, **kwargs: None
deprecation_utils.deprecate = lambda *arg, **kwargs: None
cross_attention.deprecate = lambda *arg, **kwargs: None
'''

import os
import sys
'''
MAIN_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.insert(0, MAIN_DIR)
os.chdir(MAIN_DIR)
'''

import gradio as gr
import numpy as np
import torch
import random

from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.pipelines import DiffusionPipeline
from diffusers.schedulers import DPMSolverMultistepScheduler
#from models import ControlLoRA, ControlLoRACrossAttnProcessor

apply_canny = CannyDetector()

device = 'cuda' if torch.cuda.is_available() else 'cpu'

'''
pipeline = DiffusionPipeline.from_pretrained(
    'IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1', safety_checker=None
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(device)
unet: UNet2DConditionModel = pipeline.unet

#ckpt_path = "ckpts/sd-diffusiondb-canny-model-control-lora-zh"
ckpt_path = "svjack/canny-control-lora-zh"
control_lora = ControlLoRA.from_pretrained(ckpt_path)
control_lora = control_lora.to(device)

# load control lora attention processors
lora_attn_procs = {}
lora_layers_list = list([list(layer_list) for layer_list in control_lora.lora_layers])
n_ch = len(unet.config.block_out_channels)
control_ids = [i for i in range(n_ch)]
for name in pipeline.unet.attn_processors.keys():
    cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
    if name.startswith("mid_block"):
        control_id = control_ids[-1]
    elif name.startswith("up_blocks"):
        block_id = int(name[len("up_blocks.")])
        control_id = list(reversed(control_ids))[block_id]
    elif name.startswith("down_blocks"):
        block_id = int(name[len("down_blocks.")])
        control_id = control_ids[block_id]

    lora_layers = lora_layers_list[control_id]
    if len(lora_layers) != 0:
        lora_layer: ControlLoRACrossAttnProcessor = lora_layers.pop(0)
        lora_attn_procs[name] = lora_layer

unet.set_attn_processor(lora_attn_procs)
'''

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDPMScheduler,
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
    UniPCMultistepScheduler,
)
import torch
from diffusers.utils import load_image

controlnet_model_name_or_path = "svjack/ControlNet-Canny-Zh"
controlnet = ControlNetModel.from_pretrained(controlnet_model_name_or_path)

base_model_path = "IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1"
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    base_model_path, controlnet=controlnet,
    #torch_dtype=torch.float16
)

# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
#pipe.enable_model_cpu_offload()
if device == "cuda":
    pipe = pipe.to("cuda")

pipe.safety_checker = None

def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, sample_steps, scale, seed, eta, low_threshold, high_threshold):
    from PIL import Image
    with torch.no_grad():
        img = resize_image(HWC3(input_image), image_resolution)
        H, W, C = img.shape

        detected_map = apply_canny(img, low_threshold, high_threshold)
        detected_map = HWC3(detected_map)
        '''
        print(type(detected_map))
        return [detected_map]

        control = torch.from_numpy(detected_map[...,::-1].copy().transpose([2,0,1])).float().to(device)[None] / 127.5 - 1
        _ = control_lora(control).control_states

        if seed == -1:
            seed = random.randint(0, 65535)
        '''
        if seed == -1:
            seed = random.randint(0, 65535)
        control_image = Image.fromarray(detected_map)

        # run inference
        generator = torch.Generator(device=device).manual_seed(seed)
        images = []
        for i in range(num_samples):
            '''
            _ = control_lora(control).control_states
            image = pipeline(
                prompt + ', ' + a_prompt, negative_prompt=n_prompt,
                num_inference_steps=sample_steps, guidance_scale=scale, eta=eta,
                generator=generator, height=H, width=W).images[0]
            '''
            image = pipe(
                prompt + ', ' + a_prompt, negative_prompt=n_prompt,
                num_inference_steps=sample_steps, guidance_scale=scale, eta=eta,
                image = control_image,
                generator=generator, height=H, width=W).images[0]
            images.append(np.asarray(image))

        results = images
    return [255 - detected_map] + results


block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("## Control Stable Diffusion with Canny Edge Maps")
        #gr.Markdown("This _example_ was **drive** from <br/><b><h4>[https://github.com/svjack/ControlLoRA-Chinese](https://github.com/svjack/ControlLoRA-Chinese)</h4></b>\n")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="numpy", value = "hate_dog.png")
            prompt = gr.Textbox(label="Prompt", value = "可爱的狗宝宝")
            run_button = gr.Button(label="Run")
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
                low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
                high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
                sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
                eta = gr.Number(label="eta", value=0.0)
                a_prompt = gr.Textbox(label="Added Prompt", value='')
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='低质量,模糊,混乱')
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, sample_steps, scale, seed, eta, low_threshold, high_threshold]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery], show_progress = True)



block.launch(server_name='0.0.0.0')

#### block.launch(server_name='172.16.202.228', share=True)