Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import torch | |
import os | |
from einops import rearrange | |
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny | |
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large | |
from .utils import pred_lines | |
from annotator.util import annotator_ckpts_path | |
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth" | |
class MLSDdetector: | |
def __init__(self): | |
model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth") | |
if not os.path.exists(model_path): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) | |
model = MobileV2_MLSD_Large() | |
model.load_state_dict(torch.load(model_path), strict=True) | |
self.model = model.cuda().eval() | |
def __call__(self, input_image, thr_v, thr_d): | |
assert input_image.ndim == 3 | |
img = input_image | |
img_output = np.zeros_like(img) | |
try: | |
with torch.no_grad(): | |
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) | |
for line in lines: | |
x_start, y_start, x_end, y_end = [int(val) for val in line] | |
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) | |
except Exception as e: | |
pass | |
return img_output[:, :, 0] | |