Spaces:
Sleeping
Sleeping
File size: 13,614 Bytes
2dced50 5da0d45 2dced50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
#from conf import *
#main_path = "/Volumes/TOSHIBA EXT/temp/kbqa_portable_prj"
#main_path = "/Users/svjack/temp/HP_kbqa"
#from conf import *
#main_path = model_path
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from datasets import ClassLabel, load_dataset, load_metric
import transformers
import transformers.adapters.composition as ac
from transformers import (
AdapterConfig,
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorForTokenClassification,
HfArgumentParser,
#MultiLingAdapterArguments,
PreTrainedTokenizerFast,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
import pandas as pd
import pickle as pkl
from copy import deepcopy
import torch
from scipy.special import softmax
from functools import partial, reduce
import json
from io import StringIO
import re
from transformers import list_adapters, AutoModelWithHeads
from collections import defaultdict
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
)
text_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
)
label_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
label_all_tokens: bool = field(
default=False,
metadata={
"help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
self.task_name = self.task_name.lower()
import os
#p0 = os.path.join(main_path, "sel_ner/ner_data_args.pkl")
p0 = "sel_ner/ner_data_args.pkl"
assert os.path.exists(p0)
with open(p0, "rb") as f:
t4 = pkl.load(f)
model_args, data_args, training_args, adapter_args = map(deepcopy, t4)
zh_model = AutoModelWithHeads.from_pretrained("bert-base-chinese")
#config_path = "/Users/svjack/temp/ner_trans/adapter_ner_data/test-sel-ner/sel_ner/adapter_config.json"
#adapter_path = "/Users/svjack/temp/ner_trans/adapter_ner_data/test-sel-ner/sel_ner"
config_path = "sel_ner/adapter_config.json"
adapter_path = "sel_ner"
#config_path = os.path.join(main_path ,"sel_ner/adapter_config.json")
#adapter_path = os.path.join(main_path ,"sel_ner")
config = AdapterConfig.load(config_path)
zh_model.load_adapter(adapter_path, config=config)
zh_model.set_active_adapters(['sel_ner'])
def single_sent_pred(input_text, tokenizer, model):
input_ = tokenizer(input_text)
input_ids = input_["input_ids"]
output = model(torch.Tensor([input_ids]).type(torch.LongTensor))
output_prob = softmax(output.logits.detach().numpy()[0], axis = -1)
token_list = tokenizer.convert_ids_to_tokens(input_ids)
assert len(token_list) == len(output_prob)
return token_list, output_prob
def single_pred_to_df(token_list, output_prob, label_list):
assert output_prob.shape[0] == len(token_list) and output_prob.shape[1] == len(label_list)
pred_label_list = pd.Series(output_prob.argmax(axis = -1)).map(
lambda idx: label_list[idx]
).tolist()
return pd.concat(list(map(pd.Series, [token_list, pred_label_list])), axis = 1)
def token_l_to_nest_l(token_l, prefix = "##"):
req = []
#req.append([])
#### token_l must startswith [CLS]
assert token_l[0] == "[CLS]"
for ele in token_l:
if not ele.startswith(prefix):
req.append([ele])
else:
req[-1].append(ele)
return req
def list_window_collect(l, w_size = 1, drop_NONE = False):
assert len(l) >= w_size
req = []
for i in range(len(l)):
l_slice = l[i: i + w_size]
l_slice += [None] * (w_size - len(l_slice))
req.append(l_slice)
if drop_NONE:
return list(filter(lambda x: None not in x, req))
return req
def same_pkt_l(l0, l1):
l0_size_l = list(map(len, l0))
assert sum(l0_size_l) == len(l1)
cum_l0_size = np.cumsum(l0_size_l).tolist()
slice_l = list_window_collect(cum_l0_size, 2, drop_NONE=True)
slice_l = [[0 ,slice_l[0][0]]] + slice_l
slice_df = pd.DataFrame(slice_l)
return (l0, slice_df.apply(lambda s: l1[s[0]:s[1]], axis = 1).tolist())
def cnt_backtrans_slice(token_list, label_list, prefix = "##",
token_agg_func = lambda x: x[0] if len(x) == 1 else "".join([x[0]] + list(map(lambda y: y[len("##"):], x[1:]))),
label_agg_func = lambda x: x[0] if len(x) == 1 else pd.Series(x).value_counts().index.tolist()[0]
):
token_nest_list = token_l_to_nest_l(token_list, prefix=prefix)
token_nest_list, label_nest_list = same_pkt_l(token_nest_list, label_list)
token_list_req = list(map(token_agg_func, token_nest_list))
label_list_req = list(map(label_agg_func, label_nest_list))
return (token_list_req, label_list_req)
def from_text_to_final(input_text, tokenizer, model, label_list):
token_list, output_prob = single_sent_pred(input_text, tokenizer, model)
token_pred_df = single_pred_to_df(token_list, output_prob, label_list)
token_list_, label_list_ = token_pred_df[0].tolist(), token_pred_df[1].tolist()
token_pred_df_reduce = pd.DataFrame(list(zip(*cnt_backtrans_slice(token_list_, label_list_))))
return token_pred_df_reduce
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
label_list = ['O-TAG', 'E-TAG', 'T-TAG']
### fix eng with " "
### used when ner_model input with some eng-string fillwith " "
def fill_str(sent ,str_):
is_en = False
if re.findall("[a-zA-Z0-9 ]+", str_) and re.findall("[a-zA-Z0-9 ]+", str_)[0] == str_:
is_en = True
if not is_en:
return str_
find_part = re.findall("([{} ]+)".format(str_), text)
assert find_part
find_part = sorted(filter(lambda x: x.replace(" ", "") == str_.replace(" ", "") ,find_part), key = len, reverse = True)[0]
assert find_part in sent
return find_part
def for_loop_detect(s, invalid_tag = "O-TAG", sp_token = "123454321"):
assert type(s) == type(pd.Series())
char_list = s.iloc[0]
tag_list = s.iloc[1]
assert len(char_list) == len(tag_list)
req = defaultdict(list)
pre_tag = ""
for idx, tag in enumerate(tag_list):
if tag == invalid_tag or tag != pre_tag:
for k in req.keys():
if req[k][-1] != invalid_tag:
req[k].append(sp_token)
if tag != pre_tag and tag != invalid_tag:
char = char_list[idx]
req[tag].append(char)
elif tag != invalid_tag:
char = char_list[idx]
req[tag].append(char)
pre_tag = tag
req = dict(map(lambda t2: (
t2[0],
list(
filter(lambda x: x.strip() ,"".join(t2[1]).split(sp_token))
)
), req.items()))
return req
def ner_entity_type_predict_only(question):
assert type(question) == type("")
question = question.replace(" ", "")
ner_df = from_text_to_final(
" ".join(list(question)),
tokenizer,
zh_model,
label_list
)
assert ner_df.shape[0] == len(question) + 2
### [UNK] filling
ner_df[0] = ["[CLS]"] + list(question) + ["[SEP]"]
et_dict = for_loop_detect(ner_df.T.apply(lambda x: x.tolist(), axis = 1))
return et_dict
import gradio as gr
example_sample = [
"宁波在哪个省份?",
"美国的通货是什么?",
]
demo = gr.Interface(
fn=ner_entity_type_predict_only,
inputs="text",
outputs="json",
title=f"Chinese Question Entity Property decomposition 🌧️ demonstration",
examples=example_sample if example_sample else None,
cache_examples = False
)
demo.launch(server_name=None, server_port=None)
'''
rep = requests.post(
url = "http://localhost:8855/extract_et",
data = {
"question": "哈利波特的作者是谁?"
}
)
json.loads(rep.content.decode())
@csrf_exempt
def extract_et(request):
assert request.method == "POST"
post_data = request.POST
question = post_data["question"]
assert type(question) == type("")
#question = "宁波在哪个省?"
#abc = do_search(question)
et_dict = ner_entity_type_predict_only(question)
assert type(et_dict) == type({})
return HttpResponse(json.dumps(et_dict))
if __name__ == "__main__":
from_text_to_final("宁波在哪个省?",
tokenizer,
zh_model,
label_list
)
from_text_to_final("美国的通货是什么?",
tokenizer,
zh_model,
label_list
)
'''
|