Genshin-Impact-XL-MasaCtrl / run_synthesis_genshin_impact_xl.py
svjack's picture
Upload 23 files
f070657 verified
'''
python run_synthesis_genshin_impact_xl.py --model_path "svjack/GenshinImpact_XL_Base" \
--prompt1 "A portrait of an old man, facing camera, best quality" \
--prompt2 "A portrait of an old man, facing camera, smiling, best quality" --guidance_scale 3.5
python run_synthesis_genshin_impact_xl.py --model_path "svjack/GenshinImpact_XL_Base" \
--prompt1 "solo,ZHONGLI\(genshin impact\),1boy,highres," \
--prompt2 "solo,ZHONGLI drink tea use chinese cup \(genshin impact\),1boy,highres," --guidance_scale 5
from IPython import display
display.Image("masactrl_exp/solo_zhongli_drink_tea_use_chinese_cup___genshin_impact___1boy_highres_/sample_0/masactrl_step4_layer64.png", width=512, height=512)
display.Image("masactrl_exp/solo_zhongli_drink_tea_use_chinese_cup___genshin_impact___1boy_highres_/sample_1/source_step4_layer74.png", width=512, height=512)
'''
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from einops import rearrange, repeat
from omegaconf import OmegaConf
from diffusers import DDIMScheduler, DiffusionPipeline
from masactrl.diffuser_utils import MasaCtrlPipeline
from masactrl.masactrl_utils import AttentionBase
from masactrl.masactrl_utils import regiter_attention_editor_diffusers
from masactrl.masactrl import MutualSelfAttentionControl
from torchvision.utils import save_image
from torchvision.io import read_image
from pytorch_lightning import seed_everything
import argparse
import re
torch.cuda.set_device(0) # set the GPU device
# Note that you may add your Hugging Face token to get access to the models
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def pathify(s):
# Convert to lowercase and replace non-alphanumeric characters with underscores
return re.sub(r'[^a-zA-Z0-9]', '_', s.lower())
def consistent_synthesis(args):
seed = 42
seed_everything(seed)
# Create the output directory based on prompt2
out_dir_ori = os.path.join("masactrl_exp", pathify(args.prompt2))
os.makedirs(out_dir_ori, exist_ok=True)
prompts = [
args.prompt1,
args.prompt2,
]
# inference the synthesized image with MasaCtrl
# TODO: note that the hyper paramerter of MasaCtrl for SDXL may be not optimal
STEP = 4
#LAYER_LIST = [44, 54, 64] # run the synthesis with MasaCtrl at three different layer configs
#LAYER_LIST = [64, 74, 84, 94] # run the synthesis with MasaCtrl at three different layer configs
LAYER_LIST = [64, 74] # run the synthesis with MasaCtrl at three different layer configs
# initialize the noise map
start_code = torch.randn([1, 4, 128, 128], device=device)
start_code = start_code.expand(len(prompts), -1, -1, -1)
# Load the model
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
model = DiffusionPipeline.from_pretrained(args.model_path, scheduler=scheduler).to(device)
# inference the synthesized image without MasaCtrl
editor = AttentionBase()
regiter_attention_editor_diffusers(model, editor)
image_ori = model(prompts, latents=start_code, guidance_scale=args.guidance_scale).images
for LAYER in LAYER_LIST:
# hijack the attention module
editor = MutualSelfAttentionControl(STEP, LAYER, model_type="SDXL")
regiter_attention_editor_diffusers(model, editor)
# inference the synthesized image
image_masactrl = model(prompts, latents=start_code, guidance_scale=args.guidance_scale).images
sample_count = len(os.listdir(out_dir_ori))
out_dir = os.path.join(out_dir_ori, f"sample_{sample_count}")
os.makedirs(out_dir, exist_ok=True)
image_ori[0].save(os.path.join(out_dir, f"source_step{STEP}_layer{LAYER}.png"))
image_ori[1].save(os.path.join(out_dir, f"without_step{STEP}_layer{LAYER}.png"))
image_masactrl[-1].save(os.path.join(out_dir, f"masactrl_step{STEP}_layer{LAYER}.png"))
with open(os.path.join(out_dir, f"prompts.txt"), "w") as f:
for p in prompts:
f.write(p + "\n")
f.write(f"seed: {seed}\n")
print("Syntheiszed images are saved in", out_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Consistent Synthesis with MasaCtrl")
parser.add_argument("--model_path", type=str, default="svjack/GenshinImpact_XL_Base", help="Path to the model")
parser.add_argument("--prompt1", type=str, default="A portrait of an old man, facing camera, best quality", help="First prompt")
parser.add_argument("--prompt2", type=str, default="A portrait of an old man, facing camera, smiling, best quality", help="Second prompt")
parser.add_argument("--guidance_scale", type=float, default=7.5, help="Guidance scale")
parser.add_argument("--out_dir", type=str, default=None, help="Output directory")
args = parser.parse_args()
# If out_dir is not provided, use the default path based on prompt2
if args.out_dir is None:
args.out_dir = os.path.join("masactrl_exp", pathify(args.prompt2))
consistent_synthesis(args)