File size: 16,636 Bytes
b910d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbcb166
0bdbd1a
1776e07
b910d20
13f48f4
b910d20
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import json
import random
import gradio as gr
from pathlib import Path
import os
import requests
from PIL import Image
import io
import pathlib


API_TOKEN = os.environ.get("HF_READ_TOKEN")

base_dir = "."
dropdown_options_file = Path(base_dir, "json/dropdown_options.json")
category_data_file = Path(base_dir, "json/category_data.json")
style_data_file = Path(base_dir, "json/style_data.json")
prefix_data_file = Path(base_dir, "json/prefix_data.json")
lightning_data_file = Path(base_dir, "json/lightning_data.json")
lens_data_file = Path(base_dir, "json/lens_data.json")


class Model:
    '''
    Small strut to hold data for the text generator
    '''

    def __init__(self, name) -> None:
        self.name = name
        pass


def populate_dropdown_options():
    path = dropdown_options_file
    with open(path, 'r') as f:
        data = json.load(f)
    category_choices = data["category"]
    style_choices = data["style"]
    lightning_choices = data["lightning"]
    lens_choices = data["lens"]
    return tuple(category_choices), tuple(style_choices), tuple(lightning_choices), tuple(lens_choices),


def add_to_prompt(*args):
    prompt, use_default_negative_prompt, base_prompt, negative_base_prompt = args
    default_negative_prompt = "(worst quality:1.2), (low quality:1.2), (lowres:1.1), (monochrome:1.1), (greyscale), multiple views, comic, sketch, (((bad anatomy))), (((deformed))), (((disfigured))), watermark, multiple_views, mutation hands, mutation fingers, extra fingers, missing fingers, watermark"
    if(use_default_negative_prompt):
        return "{} {}".format(base_prompt ,prompt), default_negative_prompt
    else:
        return "{} {}".format(base_prompt ,prompt), ""


def get_random_prompt(data):
    random_key = random.choice(list(data.keys()))
    random_array = random.choice(data[random_key])
    random_strings = random.sample(random_array, 3)
    return random_strings

def get_correct_prompt(data, selected_dropdown):
    correct_array = data[selected_dropdown]
    random_array = random.choice(correct_array)
    random_strings = random.sample(random_array, 3)
    random_strings.insert(0, selected_dropdown)

    return random_strings

def generate_prompt_output(*args):
    #all imported files
    prefix_path = prefix_data_file
    category_path = category_data_file
    style_path = style_data_file
    lightning_path = lightning_data_file
    lens_path = lens_data_file

    #destructure args
    category, style, lightning, lens, negative_prompt = args

    # Convert variables to lowercase
    category = category.lower()
    style = style.lower()
    lightning = lightning.lower()
    lens = lens.lower()

    # Open category_data.json and grab correct text
    with open(prefix_path, 'r') as f:
        prefix_data = json.load(f)
        prefix_prompt = random.sample(prefix_data, 6)
        modified_prefix_prompt = [f"(({item}))" for item in prefix_prompt]


    # Open category_data.json and grab correct text
    with open(category_path, 'r') as f2:
        category_data = json.load(f2)

    if category == "none":
        category_prompt = ""
    elif category == "random":
        category_prompt = get_random_prompt(category_data)
    else:
        category_prompt = get_correct_prompt(category_data, category)


    # Open style_data.json and grab correct text
    with open(style_path, 'r') as f3:
        style_data = json.load(f3)

    if style == "none":
        style_prompt = ""
    elif style == "random":
        style_prompt = get_random_prompt(style_data)
    else:
        style_prompt = get_correct_prompt(style_data, style)

    # Open lightning_data.json and grab correct text
    with open(lightning_path, 'r') as f4:
        lightning_data = json.load(f4)

    if lightning == "none":
        lightning_prompt = ""
    elif lightning == "random":
        lightning_prompt = get_random_prompt(lightning_data)
    else:
        lightning_prompt = get_correct_prompt(lightning_data, lightning)

    # Open lens_data.json and grab correct text
    with open(lens_path, 'r') as f5:
        lens_data = json.load(f5)

    if lens == "none":
        lens_prompt = ""
    elif lens == "random":
        lens_prompt = get_random_prompt(lens_data)
    else:
        lens_prompt = get_correct_prompt(lens_data, lens)


    prompt_output = modified_prefix_prompt, category_prompt, style_prompt, lightning_prompt, lens_prompt
    prompt_strings = []

    for sublist in prompt_output:
        # Join the sublist elements into a single string
        prompt_string = ", ".join(str(item) for item in sublist)
        if prompt_string:  # Check if the prompt_string is not empty
            prompt_strings.append(prompt_string)

    # Join the non-empty prompt_strings
    final_output = ", ".join(prompt_strings)

    return final_output

list_models = [
    "SDXL-1.0",
    "SD-1.5",
    "OpenJourney-V4",
    "Anything-V4",
    "Disney-Pixar-Cartoon",
    "Pixel-Art-XL",
    "Dalle-3-XL",
    "Midjourney-V4-XL",
]

def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
                     seed=None, API_TOKEN = API_TOKEN):
    print("call {} {} one time".format(current_model, prompt))
    '''
    import shutil
    im_save_dir = "local_img_dir"
    if not os.path.exists(im_save_dir):
        #shutil.rmtree(im_save_dir)
        os.mkdir(im_save_dir)
    '''

    if current_model == "SD-1.5":
        API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
    elif current_model == "SDXL-1.0":
        API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
    elif current_model == "OpenJourney-V4":
        API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
    elif current_model == "Anything-V4":
        API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
    elif current_model == "Disney-Pixar-Cartoon":
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
    elif current_model == "Pixel-Art-XL":
        API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
    elif current_model == "Dalle-3-XL":
        API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
    elif current_model == "Midjourney-V4-XL":
        API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"

    #API_TOKEN = os.environ.get("HF_READ_TOKEN")
    headers = {"Authorization": f"Bearer {API_TOKEN}"}

    if type(prompt) != type(""):
        prompt = DEFAULT_PROMPT

    if image_style == "None style":
        payload = {
            "inputs": prompt + ", 8k",
            "is_negative": is_negative,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Cinematic":
        payload = {
            "inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
            "is_negative": is_negative + ", abstract, cartoon, stylized",
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Digital Art":
        payload = {
            "inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
            "is_negative": is_negative + ", sharp , modern , bright",
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Portrait":
        payload = {
            "inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
            "is_negative": is_negative,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }

    image_bytes = requests.post(API_URL, headers=headers, json=payload).content
    image = Image.open(io.BytesIO(image_bytes))
    '''
    from uuid import uuid1
    path = os.path.join(im_save_dir ,"{}.png".format(uuid1()))
    image.save(path)
    return path
    '''
    return image
    #yield image
    #return [image]

def on_ui_tabs():
    '''
    # UI structure
    txt2img_prompt = modules.ui.txt2img_paste_fields[0][0]
    img2img_prompt = modules.ui.img2img_paste_fields[0][0]
    txt2img_negative_prompt = modules.ui.txt2img_paste_fields[1][0]
    img2img_negative_prompt = modules.ui.img2img_paste_fields[1][0]
    '''

    with gr.Blocks(css = '''
    .header img {
          float: middle;
          width: 33px;
          height: 33px;
        }
        .header h1 {
          top: 18px;
          left: 10px;
        }
    '''
    ) as prompt_generator:
        gr.HTML(
        '''
        <center>
        <div class="header">
        <h1 class = "logo"> <img src="https://huggingface.co/spaces/svjack/Next-Diffusion-Prompt-Generator/resolve/main/images/nextdiffusion_logo.png" alt="logo" /> πŸ§‘β€πŸŽ¨ Next Diffusion Prompt On Stable Diffuison </h1>
        </center>
        ''')

        with gr.Tab("Prompt Generator"):
            with gr.Row():  # Use Row to arrange two columns side by side
                with gr.Column():  # Left column for dropdowns
                    category_choices, style_choices, lightning_choices, lens_choices = populate_dropdown_options()

                    with gr.Row():
                        gr.HTML('''<h2 id="input_header">Input πŸ‘‡</h2>''')
                    with gr.Row():
                        # Create a dropdown to select
                        with gr.Row():
                            txt2img_prompt = gr.Textbox(label = "txt2img_prompt", interactive = True)
                            txt2img_negative_prompt = gr.Textbox(label = "txt2img_negative_prompt", interactive = True)
                        '''
                        with gr.Row():
                            img2img_prompt = gr.Textbox(label = "img2img_prompt", interactive = True)
                            img2img_negative_prompt = gr.Textbox(label = "img2img_negative_prompt", interactive = True)
                        '''
                    with gr.Row():
                        current_model = gr.Dropdown(label="Current Model", choices=list_models, value=list_models[1])
                        text_button = gr.Button("Generate image by Stable Diffusion")
                    with gr.Row():
                        image_output = gr.Image(label="Output Image", type = "filepath", elem_id="gallery", height = 512,
                            show_share_button = True
                        )
                        #image_gallery = gr.Gallery(height = 512, label = "Output Gallery")
                        #image_file = gr.File(label="Output Image File")

                with gr.Column():  # Right column for result_textbox and generate_button
                    # Add a Textbox to display the generated text
                    with gr.Row():
                        gr.HTML('''<h2 id="output_header">Prompt Extender by Rule πŸ‘‹ (aid Input πŸ‘ˆ)</h2>''')
                    with gr.Row().style(equal_height=True):  # Place dropdowns side by side
                        category_dropdown = gr.Dropdown(
                            choices=category_choices,
                            value=category_choices[1],
                            label="Category", show_label=True
                        )

                        style_dropdown = gr.Dropdown(
                            choices=style_choices,
                            value=style_choices[1],
                            label="Style", show_label=True
                        )
                    with gr.Row():
                        lightning_dropdown = gr.Dropdown(
                            choices=lightning_choices,
                            value=lightning_choices[1],
                            label="Lightning", show_label=True
                        )

                        lens_dropdown = gr.Dropdown(
                            choices=lens_choices,
                            value=lens_choices[1],
                            label="Lens", show_label=True
                        )
                    result_textbox = gr.Textbox(label="Generated Prompt", lines=3)
                    use_default_negative_prompt = gr.Checkbox(label="Include Negative Prompt", value=True, interactive=True, elem_id="negative_prompt_checkbox")
                    setattr(use_default_negative_prompt,"do_not_save_to_config",True)
                    with gr.Row():
                        generate_button = gr.Button(value="Generate", elem_id="generate_button")
                        clear_button = gr.Button(value="Clear")
                    with gr.Row():
                        txt2img = gr.Button("Send to txt2img")
                        #img2img = gr.Button("Send to img2img")
                    with gr.Row():
                        gr.HTML('''
                        <hr class="rounded" id="divider">
                    ''')
                    with gr.Row():
                        gr.HTML('''<h2 id="input_header">Links</h2>''')
                    with gr.Row():
                        gr.HTML('''
                        <h3>Stable Diffusion Tutorials⚑</h3>
                        <container>
                            <a href="https://nextdiffusion.ai" target="_blank">
                                <button id="website_button" class="external-link">Website</button>
                            </a>
                            <a href="https://www.youtube.com/channel/UCd9UIUkLnjE-Fj-CGFdU74Q?sub_confirmation=1" target="_blank">
                                <button id="youtube_button" class="external-link">YouTube</button>
                            </a>
                        </container>
                    ''')

                    '''
                    with gr.Accordion("Advanced settings", open=True):
                        negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1, elem_id="negative-prompt-text-input")
                        image_style = gr.Dropdown(label="Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style", allow_custom_value=False)    with gr.Row():
                    '''

                    # Create a button to trigger text generation
                    txt2img.click(add_to_prompt, inputs=[result_textbox, use_default_negative_prompt, txt2img_prompt, txt2img_negative_prompt], outputs=[txt2img_prompt, txt2img_negative_prompt ])
                    #img2img.click(add_to_prompt, inputs=[result_textbox, use_default_negative_prompt, img2img_prompt, img2img_negative_prompt], outputs=[img2img_prompt, img2img_negative_prompt])

                    clear_button.click(lambda x: [""] * 3 + ["Random", "Random", "Random", "Random"], None,
                    [result_textbox, txt2img_prompt, txt2img_negative_prompt,
                    category_dropdown, style_dropdown, lightning_dropdown, lens_dropdown
                    ])

                    text_button.click(generate_txt2img, inputs=[current_model, txt2img_prompt, txt2img_negative_prompt], outputs=image_output,

                    )

        # Register the callback for the Generate button
        generate_button.click(fn=generate_prompt_output, inputs=[category_dropdown, style_dropdown, lightning_dropdown, lens_dropdown, use_default_negative_prompt], outputs=[result_textbox])

        gr.Examples(
            [
            #["A lovely cat", "low quality, blur", "OpenJourney-V4", "Anime", "Drawing", "Bloom light", "F/14"],
            ["Forest house", "low quality, blur", "SD-1.5", "None", "Photograph", "Beautifully lit", "800mm lens"],
            ["A girl in pink", "low quality, blur", "SD-1.5", "Anime", "3D style", "None", "Random"],
            ],
            inputs = [txt2img_prompt, txt2img_negative_prompt, current_model, category_dropdown, style_dropdown, lightning_dropdown, lens_dropdown]
        )

    return prompt_generator


with on_ui_tabs() as demo:
    pass

demo.launch(show_api = False)