SAM2Long-Demo / video_filter.py
svjack's picture
Upload 3 files
4d779f8 verified
'''
python video_filter.py input_video.mp4 mask_area_ratios.json 0.1 filtered_video_01.mp4
python video_filter.py input_video.mp4 mask_area_ratios.json 0.0 filtered_video_00.mp4
'''
import argparse
import cv2
import json
import os
import numpy as np
from moviepy.editor import ImageSequenceClip
def process_video(video_path, json_path, threshold, output_path):
# 读取视频
if os.path.exists("input_video.mp4"):
video_path = "input_video.mp4"
cap = cv2.VideoCapture(video_path)
input_fps = cap.get(cv2.CAP_PROP_FPS) # 获取输入视频的帧率
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 获取总帧数
# 读取所有帧
all_frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换为RGB
all_frames.append(frame_rgb)
cap.release()
# 读取JSON文件
with open(json_path, 'r') as f:
mask_area_ratios = json.load(f)
# 获取mask_area_ratios中的帧索引和对应的ratio
frame_indices = [int(key.split("_")[1]) for key in mask_area_ratios.keys()]
ratios = [mask_area_ratios[key] for key in mask_area_ratios.keys()]
# 创建一个长度为 total_frames 的数组来存储对应的 ratio
all_ratios = [None] * len(all_frames)
# 将 mask_area_ratios 的帧索引和对应的 ratio 映射到 all_ratios
for frame_index, ratio in zip(frame_indices, ratios):
scaled_index = int(frame_index * (len(all_frames) - 1) / max(frame_indices))
all_ratios[scaled_index] = ratio
# 填充缺失的 ratio 值,使用最邻近值
for i in range(len(all_ratios)):
if all_ratios[i] is None:
# 找到最近的非空值
left_index = i - 1
right_index = i + 1
while left_index >= 0 and all_ratios[left_index] is None:
left_index -= 1
while right_index < len(all_ratios) and all_ratios[right_index] is None:
right_index += 1
if left_index >= 0 and right_index < len(all_ratios):
# 使用最近的左边或右边的值
all_ratios[i] = all_ratios[left_index] if all_ratios[left_index] is not None else all_ratios[right_index]
elif left_index >= 0:
all_ratios[i] = all_ratios[left_index]
elif right_index < len(all_ratios):
all_ratios[i] = all_ratios[right_index]
# 筛选符合条件的帧
frames = []
for frame_idx, ratio in enumerate(all_ratios):
if ratio >= threshold:
frames.append(all_frames[frame_idx])
# 保存符合条件的帧为视频
if frames:
clip = ImageSequenceClip(frames, fps=input_fps) # 使用输入视频的帧率
clip.write_videofile(output_path, codec="libx264")
print(f"Output video saved to {output_path}")
else:
print("No frames meet the threshold condition.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Filter video frames based on mask area ratios.")
parser.add_argument("video_path", type=str, nargs='?', default="input_video.mp4", help="Path to the input video file. Default: input_video.mp4")
parser.add_argument("json_path", type=str, nargs='?', default="mask_area_ratios.json", help="Path to the JSON file containing mask area ratios. Default: mask_area_ratios.json")
parser.add_argument("threshold", type=float, nargs='?', default=0.25, help="Threshold for mask area ratio. Default: 0.25")
parser.add_argument("output_path", type=str, nargs='?', default="output_seg_video.mp4", help="Path to save the output video. Default: output_seg_video.mp4")
args = parser.parse_args()
process_video(args.video_path, args.json_path, args.threshold, args.output_path)