Spaces:
Running
Running
''' | |
python video_filter.py input_video.mp4 mask_area_ratios.json 0.1 filtered_video_01.mp4 | |
python video_filter.py input_video.mp4 mask_area_ratios.json 0.0 filtered_video_00.mp4 | |
''' | |
import argparse | |
import cv2 | |
import json | |
import os | |
import numpy as np | |
from moviepy.editor import ImageSequenceClip | |
def process_video(video_path, json_path, threshold, output_path): | |
# 读取视频 | |
if os.path.exists("input_video.mp4"): | |
video_path = "input_video.mp4" | |
cap = cv2.VideoCapture(video_path) | |
input_fps = cap.get(cv2.CAP_PROP_FPS) # 获取输入视频的帧率 | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 获取总帧数 | |
# 读取所有帧 | |
all_frames = [] | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换为RGB | |
all_frames.append(frame_rgb) | |
cap.release() | |
# 读取JSON文件 | |
with open(json_path, 'r') as f: | |
mask_area_ratios = json.load(f) | |
# 获取mask_area_ratios中的帧索引和对应的ratio | |
frame_indices = [int(key.split("_")[1]) for key in mask_area_ratios.keys()] | |
ratios = [mask_area_ratios[key] for key in mask_area_ratios.keys()] | |
# 创建一个长度为 total_frames 的数组来存储对应的 ratio | |
all_ratios = [None] * len(all_frames) | |
# 将 mask_area_ratios 的帧索引和对应的 ratio 映射到 all_ratios | |
for frame_index, ratio in zip(frame_indices, ratios): | |
scaled_index = int(frame_index * (len(all_frames) - 1) / max(frame_indices)) | |
all_ratios[scaled_index] = ratio | |
# 填充缺失的 ratio 值,使用最邻近值 | |
for i in range(len(all_ratios)): | |
if all_ratios[i] is None: | |
# 找到最近的非空值 | |
left_index = i - 1 | |
right_index = i + 1 | |
while left_index >= 0 and all_ratios[left_index] is None: | |
left_index -= 1 | |
while right_index < len(all_ratios) and all_ratios[right_index] is None: | |
right_index += 1 | |
if left_index >= 0 and right_index < len(all_ratios): | |
# 使用最近的左边或右边的值 | |
all_ratios[i] = all_ratios[left_index] if all_ratios[left_index] is not None else all_ratios[right_index] | |
elif left_index >= 0: | |
all_ratios[i] = all_ratios[left_index] | |
elif right_index < len(all_ratios): | |
all_ratios[i] = all_ratios[right_index] | |
# 筛选符合条件的帧 | |
frames = [] | |
for frame_idx, ratio in enumerate(all_ratios): | |
if ratio >= threshold: | |
frames.append(all_frames[frame_idx]) | |
# 保存符合条件的帧为视频 | |
if frames: | |
clip = ImageSequenceClip(frames, fps=input_fps) # 使用输入视频的帧率 | |
clip.write_videofile(output_path, codec="libx264") | |
print(f"Output video saved to {output_path}") | |
else: | |
print("No frames meet the threshold condition.") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Filter video frames based on mask area ratios.") | |
parser.add_argument("video_path", type=str, nargs='?', default="input_video.mp4", help="Path to the input video file. Default: input_video.mp4") | |
parser.add_argument("json_path", type=str, nargs='?', default="mask_area_ratios.json", help="Path to the JSON file containing mask area ratios. Default: mask_area_ratios.json") | |
parser.add_argument("threshold", type=float, nargs='?', default=0.25, help="Threshold for mask area ratio. Default: 0.25") | |
parser.add_argument("output_path", type=str, nargs='?', default="output_seg_video.mp4", help="Path to save the output video. Default: output_seg_video.mp4") | |
args = parser.parse_args() | |
process_video(args.video_path, args.json_path, args.threshold, args.output_path) |