DongfuJiang commited on
Commit
e87d958
·
1 Parent(s): 6b629aa

update to videoscore

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +9 -41
  3. app_generation.py +197 -0
  4. app_high_res.py +236 -0
  5. app_regression.py +223 -0
  6. barchart.jpeg +0 -0
  7. barchart_single_image_vqa.jpeg +0 -0
  8. examples/1006309.mp4 +3 -0
  9. examples/1006309/1006309_00.jpg +0 -0
  10. examples/1006309/1006309_01.jpg +0 -0
  11. examples/1006309/1006309_02.jpg +0 -0
  12. examples/1006309/1006309_03.jpg +0 -0
  13. examples/1006309/1006309_04.jpg +0 -0
  14. examples/1006309/1006309_05.jpg +0 -0
  15. examples/1006309/1006309_06.jpg +0 -0
  16. examples/1006309/1006309_07.jpg +0 -0
  17. examples/1006309/1006309_08.jpg +0 -0
  18. examples/1006309/1006309_09.jpg +0 -0
  19. examples/1006309/1006309_10.jpg +0 -0
  20. examples/1006309/1006309_11.jpg +0 -0
  21. examples/1006309/1006309_12.jpg +0 -0
  22. examples/1006309/1006309_13.jpg +0 -0
  23. examples/1006309/1006309_14.jpg +0 -0
  24. examples/1006309/1006309_15.jpg +0 -0
  25. examples/3005033.mp4 +3 -0
  26. examples/3005033/3005033_00.jpg +0 -0
  27. examples/3005033/3005033_01.jpg +0 -0
  28. examples/3005033/3005033_02.jpg +0 -0
  29. examples/3005033/3005033_03.jpg +0 -0
  30. examples/3005033/3005033_04.jpg +0 -0
  31. examples/3005033/3005033_05.jpg +0 -0
  32. examples/3005033/3005033_06.jpg +0 -0
  33. examples/3005033/3005033_07.jpg +0 -0
  34. examples/3005033/3005033_08.jpg +0 -0
  35. examples/3005033/3005033_09.jpg +0 -0
  36. examples/3005033/3005033_10.jpg +0 -0
  37. examples/3005033/3005033_11.jpg +0 -0
  38. examples/3005033/3005033_12.jpg +0 -0
  39. examples/3005033/3005033_13.jpg +0 -0
  40. examples/3005033/3005033_14.jpg +0 -0
  41. examples/3005033/3005033_15.jpg +0 -0
  42. examples/7004180.mp4 +3 -0
  43. examples/7004180/7004180_00.jpg +0 -0
  44. examples/7004180/7004180_01.jpg +0 -0
  45. examples/7004180/7004180_02.jpg +0 -0
  46. examples/7004180/7004180_03.jpg +0 -0
  47. examples/7004180/7004180_04.jpg +0 -0
  48. examples/7004180/7004180_05.jpg +0 -0
  49. examples/7004180/7004180_06.jpg +0 -0
  50. examples/7004180/7004180_07.jpg +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,46 +1,14 @@
1
  ---
2
- title: GenAI Video Arena
3
- emoji: 🖼
4
- colorFrom: purple
5
- colorTo: red
6
  sdk: gradio
7
- sdk_version: 4.26.0
8
- app_file: app.py
9
  pinned: false
10
- license: mit
11
- tags:
12
- - arena
13
- - leaderboard
14
- short_description: Realtime Image/Video Gen AI Arena
15
  ---
16
 
17
- ## Installation
18
-
19
- - for cuda 11.8
20
- ```bash
21
- conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
22
- pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118
23
- pip install -r requirements.txt
24
- ```
25
- - for cuda 12.1
26
- ```bash
27
- conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
28
- pip install -r requirements.txt
29
- ```
30
-
31
- ## Start Hugging Face UI
32
- ```bash
33
- python app.py
34
- ```
35
-
36
- ## Start Log server
37
- ```bash
38
- uvicorn serve.log_server:app --reload --port 22005 --host 0.0.0.0
39
- ```
40
-
41
- ## Update leaderboard
42
- ```bash
43
- cd arena_elo && bash update_leaderboard.sh
44
- ```
45
-
46
- Paper: arxiv.org/abs/2406.04485
 
1
  ---
2
+ title: MantisScore
3
+ emoji: 📹
4
+ colorFrom: green
5
+ colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 4.24.0
8
+ app_file: app_regression.py
9
  pinned: false
10
+ license: apache-2.0
11
+ short_description: Multimodal Language Model
 
 
 
12
  ---
13
 
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app_generation.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import os
4
+ import time
5
+ import json
6
+ import numpy as np
7
+ import av
8
+ import torch
9
+ from PIL import Image
10
+ import functools
11
+ from transformers import AutoProcessor, AutoConfig
12
+ from models.idefics2 import Idefics2ForSequenceClassification, Idefics2ForConditionalGeneration
13
+ from models.conversation import conv_templates
14
+ from typing import List
15
+
16
+ processor = AutoProcessor.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-refined-40k_4096_generation")
17
+ model = Idefics2ForConditionalGeneration.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-refined-40k_4096_generation", torch_dtype=torch.bfloat16).eval()
18
+
19
+ MAX_NUM_FRAMES = 24
20
+ conv_template = conv_templates["idefics_2"]
21
+
22
+ with open("./examples/all_subsets.json", 'r') as f:
23
+ examples = json.load(f)
24
+
25
+ for item in examples:
26
+ video_id = item['images'][0].split("_")[0]
27
+ item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
28
+ item['video'] = os.path.join("./examples", item['video'])
29
+
30
+ with open("./examples/hd.json", 'r') as f:
31
+ hd_examples = json.load(f)
32
+
33
+ for item in hd_examples:
34
+ item['video'] = os.path.join("./examples", item['video'])
35
+
36
+ examples = hd_examples + examples
37
+
38
+ VIDEO_EVAL_PROMPT = """
39
+ Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
40
+ please watch the following frames of a given video and see the text prompt for generating the video,
41
+ then give scores from 5 different dimensions:
42
+ (1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
43
+ (2) temporal consistency, the consistency of objects or humans in video
44
+ (3) dynamic degree, the degree of dynamic changes
45
+ (4) text-to-video alignment, the alignment between the text prompt and the video content
46
+ (5) factual consistency, the consistency of the video content with the common-sense and factual knowledge
47
+
48
+ For each dimension, output a number from [1,2,3,4],
49
+ in which '1' means 'Bad', '2' means 'Average', '3' means 'Good',
50
+ '4' means 'Real' or 'Perfect' (the video is like a real video)
51
+ Here is an output example:
52
+ visual quality: 4
53
+ temporal consistency: 4
54
+ dynamic degree: 3
55
+ text-to-video alignment: 1
56
+ factual consistency: 2
57
+
58
+ For this video, the text prompt is "{text_prompt}",
59
+ all the frames of video are as follows:
60
+
61
+ """
62
+
63
+
64
+ aspect_mapping= [
65
+ "visual quality",
66
+ "temporal consistency",
67
+ "dynamic degree",
68
+ "text-to-video alignment",
69
+ "factual consistency",
70
+ ]
71
+
72
+
73
+ @spaces.GPU(duration=60)
74
+ def score(prompt:str, images:List[Image.Image]):
75
+ if not prompt:
76
+ raise gr.Error("Please provide a prompt")
77
+ model.to("cuda")
78
+ if not images:
79
+ images = None
80
+
81
+ flatten_images = []
82
+ for x in images:
83
+ if isinstance(x, list):
84
+ flatten_images.extend(x)
85
+ else:
86
+ flatten_images.append(x)
87
+
88
+ messages = [{"role": "User", "content": [{"type": "text", "text": prompt}]}]
89
+ prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
90
+ print(prompt)
91
+
92
+ flatten_images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images]
93
+ inputs = processor(text=prompt, images=flatten_images, return_tensors="pt")
94
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
95
+
96
+ outputs = model.generate(**inputs, max_new_tokens=1024)
97
+ generated_text = processor.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
98
+ return generated_text
99
+
100
+ def read_video_pyav(container, indices):
101
+ '''
102
+ Decode the video with PyAV decoder.
103
+
104
+ Args:
105
+ container (av.container.input.InputContainer): PyAV container.
106
+ indices (List[int]): List of frame indices to decode.
107
+
108
+ Returns:
109
+ np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
110
+ '''
111
+ frames = []
112
+ container.seek(0)
113
+ start_index = indices[0]
114
+ end_index = indices[-1]
115
+ for i, frame in enumerate(container.decode(video=0)):
116
+ if i > end_index:
117
+ break
118
+ if i >= start_index and i in indices:
119
+ frames.append(frame)
120
+ return np.stack([x.to_ndarray(format="rgb24") for x in frames])
121
+
122
+ def eval_video(prompt, video:str):
123
+ container = av.open(video)
124
+
125
+ # sample uniformly 8 frames from the video
126
+ total_frames = container.streams.video[0].frames
127
+ if total_frames > MAX_NUM_FRAMES:
128
+ indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int)
129
+ else:
130
+ indices = np.arange(total_frames)
131
+ video_frames = read_video_pyav(container, indices)
132
+
133
+ frames = [Image.fromarray(x) for x in video_frames]
134
+
135
+ eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt)
136
+
137
+ num_image_token = eval_prompt.count("<image>")
138
+ if num_image_token < len(frames):
139
+ eval_prompt += "<image> " * (len(frames) - num_image_token)
140
+
141
+ aspect_scores = score(eval_prompt, [frames])
142
+ return aspect_scores
143
+
144
+ def build_demo():
145
+ with gr.Blocks() as demo:
146
+ gr.Markdown("""
147
+ ## Video Evaluation
148
+ upload a video along with a text prompt when generating the video, this model will evaluate the video's quality from 7 different dimensions.
149
+ """)
150
+ with gr.Row():
151
+ video = gr.Video(width=500, label="Video")
152
+ with gr.Column():
153
+ eval_prompt_template = gr.Textbox(VIDEO_EVAL_PROMPT.strip(' \n'), label="Evaluation Prompt Template", interactive=False, max_lines=26)
154
+ video_prompt = gr.Textbox(label="Text Prompt", lines=1)
155
+ with gr.Row():
156
+ eval_button = gr.Button("Evaluate Video")
157
+ clear_button = gr.ClearButton([video, video_prompt])
158
+ eval_result = gr.Textbox(label="Evaluation result", interactive=False, lines=7)
159
+ # eval_result = gr.Json(label="Evaluation result")
160
+
161
+
162
+ eval_button.click(
163
+ eval_video, [video_prompt, video], [eval_result]
164
+ )
165
+
166
+ dummy_id = gr.Textbox("id", label="id", visible=False, min_width=50)
167
+ dummy_output = gr.Textbox("reference score", label="reference scores", visible=False, lines=7)
168
+
169
+ gr.Examples(
170
+ examples=
171
+ [
172
+ [
173
+ item['id'],
174
+ item['prompt'],
175
+ item['video'],
176
+ item['conversations'][1]['value']
177
+ ] for item in examples
178
+ ],
179
+ inputs=[dummy_id, video_prompt, video, dummy_output],
180
+ )
181
+
182
+ # gr.Markdown("""
183
+ # ## Citation
184
+ # ```
185
+ # @article{jiang2024mantis,
186
+ # title={MANTIS: Interleaved Multi-Image Instruction Tuning},
187
+ # author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
188
+ # journal={arXiv preprint arXiv:2405.01483},
189
+ # year={2024}
190
+ # }
191
+ # ```""")
192
+ return demo
193
+
194
+
195
+ if __name__ == "__main__":
196
+ demo = build_demo()
197
+ demo.launch(share=True)
app_high_res.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import os
4
+ import time
5
+ import json
6
+ import numpy as np
7
+ import av
8
+ import torch
9
+ from PIL import Image
10
+ import functools
11
+ from transformers import AutoProcessor, Idefics2ForConditionalGeneration
12
+ from models.conversation import conv_templates
13
+ from typing import List
14
+
15
+
16
+ processor = AutoProcessor.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-refined-40k_4096_generation")
17
+ model = Idefics2ForConditionalGeneration.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-refined-40k_4096_generation", device_map="auto", torch_dtype=torch.bfloat16).eval()
18
+ MAX_NUM_FRAMES = 24
19
+ conv_template = conv_templates["idefics_2"]
20
+
21
+ with open("./examples/all_subsets.json", 'r') as f:
22
+ examples = json.load(f)
23
+
24
+ for item in examples:
25
+ video_id = item['images'][0].split("_")[0]
26
+ item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
27
+ item['video'] = os.path.join("./examples", item['video'])
28
+
29
+ with open("./examples/hd.json", 'r') as f:
30
+ hd_examples = json.load(f)
31
+
32
+ for item in hd_examples:
33
+ item['video'] = os.path.join("./examples", item['video'])
34
+
35
+ examples = hd_examples + examples
36
+
37
+ VIDEO_EVAL_PROMPT = """
38
+ Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
39
+ please watch the following frames of a given video and see the text prompt for generating the video,
40
+ then give scores from 5 different dimensions:
41
+ (1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
42
+ (2) temporal consistency, the consistency of objects or humans in video
43
+ (3) dynamic degree, the degree of dynamic changes
44
+ (4) text-to-video alignment, the alignment between the text prompt and the video content
45
+ (5) factual consistency, the consistency of the video content with the common-sense and factual knowledge
46
+
47
+ For each dimension, output a number from [1,2,3,4],
48
+ in which '1' means 'Bad', '2' means 'Average', '3' means 'Good',
49
+ '4' means 'Real' or 'Perfect' (the video is like a real video)
50
+ Here is an output example:
51
+ visual quality: 4
52
+ temporal consistency: 4
53
+ dynamic degree: 3
54
+ text-to-video alignment: 1
55
+ factual consistency: 2
56
+
57
+ For this video, the text prompt is "{text_prompt}",
58
+ all the frames of video are as follows:
59
+
60
+ """
61
+ @spaces.GPU(duration=60)
62
+ def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
63
+ model.to("cuda")
64
+ if not images:
65
+ images = None
66
+
67
+ user_role = conv_template.roles[0]
68
+ assistant_role = conv_template.roles[1]
69
+
70
+ idefics_2_message = []
71
+ cur_img_idx = 0
72
+ cur_vid_idx = 0
73
+ all_videos = [x for x in images if isinstance(x, list)]
74
+ flatten_images = []
75
+ for x in images:
76
+ if isinstance(x, list):
77
+ flatten_images.extend(x)
78
+ else:
79
+ flatten_images.append(x)
80
+
81
+ print(history)
82
+ for i, message in enumerate(history):
83
+ if message["role"] == user_role:
84
+ idefics_2_message.append({
85
+ "role": user_role,
86
+ "content": []
87
+ })
88
+ message_text = message["text"]
89
+ num_video_tokens_in_text = message_text.count("<video>")
90
+ if num_video_tokens_in_text > 0:
91
+ for _ in range(num_video_tokens_in_text):
92
+ message_text = message_text.replace("<video>", "<image> " * len(all_videos[cur_vid_idx]), 1)
93
+ cur_vid_idx += 1
94
+ num_image_tokens_in_text = message_text.count("<image>")
95
+ if num_image_tokens_in_text > 0:
96
+ sub_texts = [x.strip() for x in message_text.split("<image>")]
97
+ if sub_texts[0]:
98
+ idefics_2_message[-1]["content"].append({"type": "text", "text": sub_texts[0]})
99
+ for sub_text in sub_texts[1:]:
100
+ idefics_2_message[-1]["content"].append({"type": "image"})
101
+ if sub_text:
102
+ idefics_2_message.append({
103
+ "role": user_role,
104
+ "content": [{"type": "text", "text": sub_text}]
105
+ })
106
+ else:
107
+ idefics_2_message[-1]["content"].append({"type": "text", "text": message_text})
108
+ elif message["role"] == assistant_role:
109
+ if i == len(history) - 1 and not message["text"]:
110
+ break
111
+ idefics_2_message.append({
112
+ "role": assistant_role,
113
+ "content": [{"type": "text", "text": message["text"]}]
114
+ })
115
+ if text:
116
+ assert idefics_2_message[-1]["role"] == assistant_role and not idefics_2_message[-1]["content"], "Internal error"
117
+ idefics_2_message.append({
118
+ "role": user_role,
119
+ "content": [{"type": "text", "text": text}]
120
+ })
121
+
122
+ print(idefics_2_message)
123
+ prompt = processor.apply_chat_template(idefics_2_message, add_generation_prompt=True)
124
+
125
+ images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images]
126
+ inputs = processor(text=prompt, images=images, return_tensors="pt")
127
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
128
+ outputs = model.generate(**inputs, max_new_tokens=1024)
129
+ generated_text = processor.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
130
+ return generated_text
131
+
132
+
133
+ def read_video_pyav(container, indices):
134
+ '''
135
+ Decode the video with PyAV decoder.
136
+
137
+ Args:
138
+ container (av.container.input.InputContainer): PyAV container.
139
+ indices (List[int]): List of frame indices to decode.
140
+
141
+ Returns:
142
+ np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
143
+ '''
144
+ frames = []
145
+ container.seek(0)
146
+ start_index = indices[0]
147
+ end_index = indices[-1]
148
+ for i, frame in enumerate(container.decode(video=0)):
149
+ if i > end_index:
150
+ break
151
+ if i >= start_index and i in indices:
152
+ frames.append(frame)
153
+ return np.stack([x.to_ndarray(format="rgb24") for x in frames])
154
+
155
+ def eval_video(prompt, video:str):
156
+ container = av.open(video)
157
+
158
+ # sample uniformly 8 frames from the video
159
+ total_frames = container.streams.video[0].frames
160
+ if total_frames > MAX_NUM_FRAMES:
161
+ indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int)
162
+ else:
163
+ indices = np.arange(total_frames)
164
+ video_frames = read_video_pyav(container, indices)
165
+
166
+ frames = [Image.fromarray(x) for x in video_frames]
167
+
168
+ eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt)
169
+ eval_prompt += "<video>"
170
+ user_role = conv_template.roles[0]
171
+ assistant_role = conv_template.roles[1]
172
+ chat_messages = [
173
+ {
174
+ "role": user_role,
175
+ "text": eval_prompt
176
+ },
177
+ {
178
+ "role": assistant_role,
179
+ "text": ""
180
+ }
181
+ ]
182
+ response = generate(None, [frames], chat_messages)
183
+ return response
184
+
185
+ def build_demo():
186
+ with gr.Blocks() as demo:
187
+ gr.Markdown("""
188
+ ## Video Evaluation
189
+ upload a video along with a text prompt when generating the video, this model will evaluate the video's quality from 7 different dimensions.
190
+ """)
191
+ with gr.Row():
192
+ video = gr.Video(width=500, label="Video")
193
+ with gr.Column():
194
+ eval_prompt_template = gr.Textbox(VIDEO_EVAL_PROMPT.strip(' \n'), label="Evaluation Prompt Template", interactive=False, max_lines=26)
195
+ video_prompt = gr.Textbox(label="Text Prompt", lines=1)
196
+ with gr.Row():
197
+ eval_button = gr.Button("Evaluate Video")
198
+ clear_button = gr.ClearButton([video, video_prompt])
199
+ eval_result = gr.Textbox(label="Evaluation result", interactive=False, lines=7)
200
+
201
+ eval_button.click(
202
+ eval_video, [video_prompt, video], [eval_result]
203
+ )
204
+
205
+ dummy_id = gr.Textbox("id", label="id", visible=False, min_width=50)
206
+ dummy_output = gr.Textbox("reference score", label="reference scores", visible=False, lines=7)
207
+
208
+ gr.Examples(
209
+ examples=
210
+ [
211
+ [
212
+ item['id'],
213
+ item['prompt'],
214
+ item['video'],
215
+ item['conversations'][1]['value']
216
+ ] for item in examples
217
+ ],
218
+ inputs=[dummy_id, video_prompt, video, dummy_output],
219
+ )
220
+
221
+ # gr.Markdown("""
222
+ # ## Citation
223
+ # ```
224
+ # @article{jiang2024mantis,
225
+ # title={MANTIS: Interleaved Multi-Image Instruction Tuning},
226
+ # author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
227
+ # journal={arXiv preprint arXiv:2405.01483},
228
+ # year={2024}
229
+ # }
230
+ # ```""")
231
+ return demo
232
+
233
+
234
+ if __name__ == "__main__":
235
+ demo = build_demo()
236
+ demo.launch(share=True)
app_regression.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import os
4
+ import time
5
+ import json
6
+ import numpy as np
7
+ import av
8
+ import torch
9
+ from PIL import Image
10
+ import functools
11
+ from transformers import AutoProcessor, AutoConfig
12
+ from models.idefics2 import Idefics2ForSequenceClassification
13
+ from models.conversation import conv_templates
14
+ from typing import List
15
+
16
+
17
+ processor = AutoProcessor.from_pretrained("TIGER-Lab/VideoScore")
18
+ model = Idefics2ForSequenceClassification.from_pretrained("TIGER-Lab/VideoScore", torch_dtype=torch.bfloat16).eval()
19
+
20
+ MAX_NUM_FRAMES = 24
21
+ conv_template = conv_templates["idefics_2"]
22
+
23
+ with open("./examples/all_subsets.json", 'r') as f:
24
+ examples = json.load(f)
25
+
26
+ for item in examples:
27
+ video_id = item['images'][0].split("_")[0]
28
+ item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
29
+ item['video'] = os.path.join("./examples", item['video'])
30
+
31
+ with open("./examples/hd.json", 'r') as f:
32
+ hd_examples = json.load(f)
33
+
34
+ for item in hd_examples:
35
+ item['video'] = os.path.join("./examples", item['video'])
36
+
37
+ examples = hd_examples + examples
38
+
39
+ VIDEO_EVAL_PROMPT = """
40
+ Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
41
+ please watch the following frames of a given video and see the text prompt for generating the video,
42
+ then give scores from 5 different dimensions:
43
+ (1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
44
+ (2) temporal consistency, the consistency of objects or humans in video
45
+ (3) dynamic degree, the degree of dynamic changes
46
+ (4) text-to-video alignment, the alignment between the text prompt and the video content
47
+ (5) factual consistency, the consistency of the video content with the common-sense and factual knowledge
48
+
49
+ For each dimension, output a number from [1,2,3,4],
50
+ in which '1' means 'Bad', '2' means 'Average', '3' means 'Good',
51
+ '4' means 'Real' or 'Perfect' (the video is like a real video)
52
+ Here is an output example:
53
+ visual quality: 4
54
+ temporal consistency: 4
55
+ dynamic degree: 3
56
+ text-to-video alignment: 1
57
+ factual consistency: 2
58
+
59
+ For this video, the text prompt is "{text_prompt}",
60
+ all the frames of video are as follows:
61
+
62
+ """
63
+
64
+
65
+
66
+ space_description="""\
67
+ [📃Paper](https://arxiv.org/abs/2406.15252) | [🌐Website](https://tiger-ai-lab.github.io/VideoScore/) | [💻Github](https://github.com/TIGER-AI-Lab/VideoScore) | [🛢️Datasets](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback) | [🤗Model](https://huggingface.co/TIGER-Lab/VideoScore) | [🤗Demo](https://huggingface.co/spaces/TIGER-Lab/VideoScore)
68
+
69
+ - VideoScore is a video quality evaluation model, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) as base-model
70
+ and trained on [VideoFeedback](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback),
71
+ a large video evaluation dataset with multi-aspect human scores.
72
+
73
+ - VideoScore can reach 75+ Spearman correlation with humans on VideoEval-test, surpassing all the MLLM-prompting methods and feature-based metrics.
74
+
75
+ - VideoScore also beat the best baselines on other three benchmarks EvalCrafter, GenAI-Bench and VBench, showing high alignment with human evaluations.
76
+ """
77
+
78
+
79
+ aspect_mapping= [
80
+ "visual quality",
81
+ "temporal consistency",
82
+ "dynamic degree",
83
+ "text-to-video alignment",
84
+ "factual consistency",
85
+ ]
86
+
87
+
88
+ @spaces.GPU(duration=60)
89
+ def score(prompt:str, images:List[Image.Image]):
90
+ if not prompt:
91
+ raise gr.Error("Please provide a prompt")
92
+ model.to("cuda")
93
+ if not images:
94
+ images = None
95
+
96
+ flatten_images = []
97
+ for x in images:
98
+ if isinstance(x, list):
99
+ flatten_images.extend(x)
100
+ else:
101
+ flatten_images.append(x)
102
+
103
+ flatten_images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images]
104
+ inputs = processor(text=prompt, images=flatten_images, return_tensors="pt")
105
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
106
+ with torch.no_grad():
107
+ outputs = model(**inputs)
108
+
109
+ logits = outputs.logits
110
+ num_aspects = logits.shape[-1]
111
+ aspects = [aspect_mapping[i] for i in range(num_aspects)]
112
+
113
+ aspect_scores = {}
114
+ for i, aspect in enumerate(aspects):
115
+ aspect_scores[aspect] = round(logits[0, i].item(), 2)
116
+ return aspect_scores
117
+
118
+
119
+ def read_video_pyav(container, indices):
120
+ '''
121
+ Decode the video with PyAV decoder.
122
+
123
+ Args:
124
+ container (av.container.input.InputContainer): PyAV container.
125
+ indices (List[int]): List of frame indices to decode.
126
+
127
+ Returns:
128
+ np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
129
+ '''
130
+ frames = []
131
+ container.seek(0)
132
+ start_index = indices[0]
133
+ end_index = indices[-1]
134
+ for i, frame in enumerate(container.decode(video=0)):
135
+ if i > end_index:
136
+ break
137
+ if i >= start_index and i in indices:
138
+ frames.append(frame)
139
+ return np.stack([x.to_ndarray(format="rgb24") for x in frames])
140
+
141
+ def eval_video(prompt, video:str):
142
+ container = av.open(video)
143
+
144
+ # sample uniformly 8 frames from the video
145
+ total_frames = container.streams.video[0].frames
146
+ if total_frames > MAX_NUM_FRAMES:
147
+ indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int)
148
+ else:
149
+ indices = np.arange(total_frames)
150
+ video_frames = read_video_pyav(container, indices)
151
+
152
+ frames = [Image.fromarray(x) for x in video_frames]
153
+
154
+ eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt)
155
+
156
+ num_image_token = eval_prompt.count("<image>")
157
+ if num_image_token < len(frames):
158
+ eval_prompt += "<image> " * (len(frames) - num_image_token)
159
+
160
+ aspect_scores = score(eval_prompt, [frames])
161
+ return aspect_scores
162
+
163
+ def build_demo():
164
+ with gr.Blocks() as demo:
165
+
166
+ gr.Markdown("## VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation")
167
+ with gr.Row():
168
+ gr.Markdown(space_description)
169
+ gr.Image("https://tiger-ai-lab.github.io/VideoScore/static/images/teaser.png", label="Teaser")
170
+
171
+ gr.Markdown("### Try VideoScore (Regression) with your own text prompt and videos.")
172
+ with gr.Row():
173
+ video = gr.Video(width=500, label="Video")
174
+ with gr.Column():
175
+ eval_prompt_template = gr.Textbox(VIDEO_EVAL_PROMPT.strip(' \n'), label="Evaluation Prompt Template", interactive=False, max_lines=26)
176
+ video_prompt = gr.Textbox(label="Text Prompt", lines=1)
177
+ with gr.Row():
178
+ eval_button = gr.Button("Evaluate Video")
179
+ clear_button = gr.ClearButton([video, video_prompt])
180
+ # eval_result = gr.Textbox(label="Evaluation result", interactive=False, lines=7)
181
+ eval_result = gr.Json(label="Evaluation result")
182
+
183
+
184
+ eval_button.click(
185
+ eval_video, [video_prompt, video], [eval_result]
186
+ )
187
+
188
+ dummy_id = gr.Textbox("id", label="id", visible=False, min_width=50)
189
+ # dummy_output = gr.Textbox("reference score", label="reference scores", visible=False, lines=7)
190
+
191
+ gr.Examples(
192
+ examples=
193
+ [
194
+ [
195
+ # item['id'],
196
+ item['prompt'],
197
+ item['video'],
198
+ # item['conversations'][1]['value']
199
+ ] for item in examples if item['prompt']
200
+ ],
201
+ inputs=[video_prompt, video],
202
+ # inputs=[dummy_id, video_prompt, video, dummy_output],
203
+
204
+ )
205
+
206
+ gr.Markdown("""
207
+ ## Citation
208
+ ```
209
+ @article{he2024videoscore,
210
+ title = {VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation},
211
+ author = {He, Xuan and Jiang, Dongfu and Zhang, Ge and Ku, Max and Soni, Achint and Siu, Sherman and Chen, Haonan and Chandra, Abhranil and Jiang, Ziyan and Arulraj, Aaran and Wang, Kai and Do, Quy Duc and Ni, Yuansheng and Lyu, Bohan and Narsupalli, Yaswanth and Fan, Rongqi and Lyu, Zhiheng and Lin, Yuchen and Chen, Wenhu},
212
+ journal = {ArXiv},
213
+ year = {2024},
214
+ volume={abs/2406.15252},
215
+ url = {https://arxiv.org/abs/2406.15252},
216
+ }
217
+ ```""")
218
+ return demo
219
+
220
+
221
+ if __name__ == "__main__":
222
+ demo = build_demo()
223
+ demo.launch(share=True)
barchart.jpeg ADDED
barchart_single_image_vqa.jpeg ADDED
examples/1006309.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14852166b4443cb90576de69b439b92b88770fb29dc30fb5fafcb8a497d79ac5
3
+ size 101215
examples/1006309/1006309_00.jpg ADDED
examples/1006309/1006309_01.jpg ADDED
examples/1006309/1006309_02.jpg ADDED
examples/1006309/1006309_03.jpg ADDED
examples/1006309/1006309_04.jpg ADDED
examples/1006309/1006309_05.jpg ADDED
examples/1006309/1006309_06.jpg ADDED
examples/1006309/1006309_07.jpg ADDED
examples/1006309/1006309_08.jpg ADDED
examples/1006309/1006309_09.jpg ADDED
examples/1006309/1006309_10.jpg ADDED
examples/1006309/1006309_11.jpg ADDED
examples/1006309/1006309_12.jpg ADDED
examples/1006309/1006309_13.jpg ADDED
examples/1006309/1006309_14.jpg ADDED
examples/1006309/1006309_15.jpg ADDED
examples/3005033.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:090465f03d91787ae683591248d5aefd48b4412da8f09a950749bfab72a5c394
3
+ size 42856
examples/3005033/3005033_00.jpg ADDED
examples/3005033/3005033_01.jpg ADDED
examples/3005033/3005033_02.jpg ADDED
examples/3005033/3005033_03.jpg ADDED
examples/3005033/3005033_04.jpg ADDED
examples/3005033/3005033_05.jpg ADDED
examples/3005033/3005033_06.jpg ADDED
examples/3005033/3005033_07.jpg ADDED
examples/3005033/3005033_08.jpg ADDED
examples/3005033/3005033_09.jpg ADDED
examples/3005033/3005033_10.jpg ADDED
examples/3005033/3005033_11.jpg ADDED
examples/3005033/3005033_12.jpg ADDED
examples/3005033/3005033_13.jpg ADDED
examples/3005033/3005033_14.jpg ADDED
examples/3005033/3005033_15.jpg ADDED
examples/7004180.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d255b025443ac89854e9529341767aea3039c1b5df2d6d37cf6fc8d01410b67
3
+ size 19932
examples/7004180/7004180_00.jpg ADDED
examples/7004180/7004180_01.jpg ADDED
examples/7004180/7004180_02.jpg ADDED
examples/7004180/7004180_03.jpg ADDED
examples/7004180/7004180_04.jpg ADDED
examples/7004180/7004180_05.jpg ADDED
examples/7004180/7004180_06.jpg ADDED
examples/7004180/7004180_07.jpg ADDED