File size: 1,812 Bytes
ec67560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import re

def batch_as_list(a, batch_size = int(100000)):
    req = []
    for ele in a:
        if not req:
            req.append([])
        if len(req[-1]) < batch_size:
            req[-1].append(ele)
        else:
            req.append([])
            req[-1].append(ele)
    return req

class Obj:
    def __init__(self, model, tokenizer, device = "cpu"):
        self.model = model
        self.tokenizer = tokenizer
        self.device = device
        self.model = self.model.to(self.device)

    def predict(
        self,
        source_text: str,
        max_length: int = 512,
        num_return_sequences: int = 1,
        num_beams: int = 2,
        top_k: int = 50,
        top_p: float = 0.95,
        do_sample: bool = True,
        repetition_penalty: float = 2.5,
        length_penalty: float = 1.0,
        early_stopping: bool = True,
        skip_special_tokens: bool = True,
        clean_up_tokenization_spaces: bool = True,
    ):
        input_ids = self.tokenizer.encode(
            source_text, return_tensors="pt", add_special_tokens=True
        )
        input_ids = input_ids.to(self.device)
        generated_ids = self.model.generate(
            input_ids=input_ids,
            num_beams=num_beams,
            max_length=max_length,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            early_stopping=early_stopping,
            top_p=top_p,
            top_k=top_k,
            num_return_sequences=num_return_sequences,
        )
        preds = [
            self.tokenizer.decode(
                g,
                skip_special_tokens=skip_special_tokens,
                clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            )
            for g in generated_ids
        ]
        return preds