Spaces:
Sleeping
Sleeping
import os | |
os.system("pip install huggingface_hub") | |
from huggingface_hub import space_info | |
from predict import * | |
from transformers import BloomTokenizerFast, BloomForCausalLM | |
#import os | |
import gradio as gr | |
model_path = "svjack/bloom-dialogue" | |
tokenizer = BloomTokenizerFast.from_pretrained(model_path) | |
model = BloomForCausalLM.from_pretrained(model_path) | |
obj = Obj(model, tokenizer) | |
example_sample = [ | |
["今天天气不错。", 128], | |
["你饿吗?", 128], | |
] | |
def demo_func(prefix, max_length): | |
max_length = max(int(max_length), 32) | |
l = obj.predict(prefix, max_length=max_length)[0].split("\n-----\n") | |
l_ = [] | |
for ele in l: | |
if ele not in l_: | |
l_.append(ele) | |
l = l_ | |
assert type(l) == type([]) | |
return { | |
"Dialogue Context": l | |
} | |
markdown_exp_size = "##" | |
lora_repo = "svjack/chatglm3-few-shot" | |
lora_repo_link = "svjack/chatglm3-few-shot/?input_list_index=10" | |
emoji_info = space_info(lora_repo).__dict__["cardData"]["emoji"] | |
space_cnt = 1 | |
task_name = "[---Chinese Dialogue Generator---]" | |
description = f"{markdown_exp_size} {task_name} few shot prompt in ChatGLM3 Few Shot space repo (click submit to activate) : [{lora_repo_link}](https://huggingface.co/spaces/{lora_repo_link}) {emoji_info}" | |
demo = gr.Interface( | |
fn=demo_func, | |
inputs=[gr.Text(label = "Prefix"), | |
gr.Number(label = "Max Length", value = 128) | |
], | |
outputs="json", | |
title=f"Bloom Chinese Dialogue Generator 🐰🌸 demonstration", | |
examples=example_sample if example_sample else None, | |
#description = 'This _example_ was **drive** from <br/><b><h4>[https://github.com/svjack/Daliy-Dialogue](https://github.com/svjack/Daliy-Dialogue)</h4></b>\n', | |
description = description, | |
cache_examples = False | |
) | |
demo.launch(server_name=None, server_port=None) |