from datasets import load_from_disk, load_dataset import pandas as pd import os import gradio as gr #ds_with_embeddings = load_dataset("svjack/bloom-dialogue-generate-ds-zh", split="train") ds_with_embeddings = load_dataset("svjack/context-dialogue-generate-ds-zh-v1", split="train") ds_with_embeddings.add_faiss_index(column='L_emb') from sentence_transformers import SentenceTransformer encoder = SentenceTransformer("sentence-transformers/LaBSE") #encoder = SentenceTransformer("sentence-transformers/clip-ViT-B-32-multilingual-v1") def retrieve_search_df(question = "这座教堂建在山上", top_k = 10): question_embedding = encoder.encode(question) scores, retrieved_examples = ds_with_embeddings.get_nearest_examples('L_emb', question_embedding, k=top_k) sdf = pd.DataFrame(retrieved_examples) sdf["scores"] = scores return sdf[["sent", "dialogue", "scores"]] example_sample = [ ["这座教堂建在山上", 3], #["第一次世界大战结束了", 5], ] def demo_func(prefix, max_length): max_length = max(int(max_length), 3) l = retrieve_search_df(prefix, max_length)[["sent" ,"dialogue"]].values.tolist() assert type(l) == type([]) return { "Dialogue Context": l } demo = gr.Interface( fn=demo_func, inputs=[gr.Text(label = "Prefix"), gr.Number(label = "Top K", value = 10) ], outputs="json", title=f"Chinese Context Dialogue Generator 🐰 sample search demonstration", #description = 'This _example_ was **drive** from

[https://github.com/svjack/Daliy-Dialogue](https://github.com/svjack/Daliy-Dialogue)

\n', examples=example_sample if example_sample else None, cache_examples = False ) demo.launch(server_name=None, server_port=None)