File size: 10,321 Bytes
a80d6bb
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
c74a070
a80d6bb
 
 
c74a070
 
a80d6bb
 
 
c74a070
 
 
 
 
a80d6bb
c74a070
 
 
 
 
a80d6bb
 
c74a070
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
a80d6bb
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
a80d6bb
 
 
c74a070
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
c74a070
 
 
a80d6bb
c74a070
 
a80d6bb
c74a070
a80d6bb
 
 
c74a070
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
c74a070
 
 
 
a80d6bb
c74a070
a80d6bb
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import numpy as np
import torch
import torch.utils.data as data
import cv2
import os
import h5py
import random

import sys

ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))
sys.path.insert(0, ROOT_DIR)

from utils import train_utils, evaluation_utils

torch.multiprocessing.set_sharing_strategy("file_system")


class Offline_Dataset(data.Dataset):
    def __init__(self, config, mode):
        assert mode == "train" or mode == "valid"

        self.config = config
        self.mode = mode
        metadir = (
            os.path.join(config.dataset_path, "valid")
            if mode == "valid"
            else os.path.join(config.dataset_path, "train")
        )

        pair_num_list = np.loadtxt(os.path.join(metadir, "pair_num.txt"), dtype=str)
        self.total_pairs = int(pair_num_list[0, 1])
        self.pair_seq_list, self.accu_pair_num = train_utils.parse_pair_seq(
            pair_num_list
        )

    def collate_fn(self, batch):
        batch_size, num_pts = len(batch), batch[0]["x1"].shape[0]

        data = {}
        dtype = [
            "x1",
            "x2",
            "kpt1",
            "kpt2",
            "desc1",
            "desc2",
            "num_corr",
            "num_incorr1",
            "num_incorr2",
            "e_gt",
            "pscore1",
            "pscore2",
            "img_path1",
            "img_path2",
        ]
        for key in dtype:
            data[key] = []
        for sample in batch:
            for key in dtype:
                data[key].append(sample[key])

        for key in [
            "x1",
            "x2",
            "kpt1",
            "kpt2",
            "desc1",
            "desc2",
            "e_gt",
            "pscore1",
            "pscore2",
        ]:
            data[key] = torch.from_numpy(np.stack(data[key])).float()
        for key in ["num_corr", "num_incorr1", "num_incorr2"]:
            data[key] = torch.from_numpy(np.stack(data[key])).int()

        # kpt augmentation with random homography
        if self.mode == "train" and self.config.data_aug:
            homo_mat = torch.from_numpy(
                train_utils.get_rnd_homography(batch_size)
            ).unsqueeze(1)
            aug_seed = random.random()
            if aug_seed < 0.5:
                x1_homo = torch.cat(
                    [data["x1"], torch.ones([batch_size, num_pts, 1])], dim=-1
                ).unsqueeze(-1)
                x1_homo = torch.matmul(homo_mat.float(), x1_homo.float()).squeeze(-1)
                data["aug_x1"] = x1_homo[:, :, :2] / x1_homo[:, :, 2].unsqueeze(-1)
                data["aug_x2"] = data["x2"]
            else:
                x2_homo = torch.cat(
                    [data["x2"], torch.ones([batch_size, num_pts, 1])], dim=-1
                ).unsqueeze(-1)
                x2_homo = torch.matmul(homo_mat.float(), x2_homo.float()).squeeze(-1)
                data["aug_x2"] = x2_homo[:, :, :2] / x2_homo[:, :, 2].unsqueeze(-1)
                data["aug_x1"] = data["x1"]
        else:
            data["aug_x1"], data["aug_x2"] = data["x1"], data["x2"]
        return data

    def __getitem__(self, index):
        seq = self.pair_seq_list[index]
        index_within_seq = index - self.accu_pair_num[seq]

        with h5py.File(
            os.path.join(self.config.dataset_path, seq, "info.h5py"), "r"
        ) as data:
            R, t = (
                data["dR"][str(index_within_seq)][()],
                data["dt"][str(index_within_seq)][()],
            )
            egt = np.reshape(
                np.matmul(
                    np.reshape(
                        evaluation_utils.np_skew_symmetric(
                            t.astype("float64").reshape(1, 3)
                        ),
                        (3, 3),
                    ),
                    np.reshape(R.astype("float64"), (3, 3)),
                ),
                (3, 3),
            )
            egt = egt / np.linalg.norm(egt)
            K1, K2 = (
                data["K1"][str(index_within_seq)][()],
                data["K2"][str(index_within_seq)][()],
            )
            size1, size2 = (
                data["size1"][str(index_within_seq)][()],
                data["size2"][str(index_within_seq)][()],
            )

            img_path1, img_path2 = (
                data["img_path1"][str(index_within_seq)][()][0].decode(),
                data["img_path2"][str(index_within_seq)][()][0].decode(),
            )
            img_name1, img_name2 = img_path1.split("/")[-1], img_path2.split("/")[-1]
            img_path1, img_path2 = os.path.join(
                self.config.rawdata_path, img_path1
            ), os.path.join(self.config.rawdata_path, img_path2)
            fea_path1, fea_path2 = os.path.join(
                self.config.desc_path, seq, img_name1 + self.config.desc_suffix
            ), os.path.join(
                self.config.desc_path, seq, img_name2 + self.config.desc_suffix
            )
            with h5py.File(fea_path1, "r") as fea1, h5py.File(fea_path2, "r") as fea2:
                desc1, kpt1, pscore1 = (
                    fea1["descriptors"][()],
                    fea1["keypoints"][()][:, :2],
                    fea1["keypoints"][()][:, 2],
                )
                desc2, kpt2, pscore2 = (
                    fea2["descriptors"][()],
                    fea2["keypoints"][()][:, :2],
                    fea2["keypoints"][()][:, 2],
                )
                kpt1, kpt2, desc1, desc2 = (
                    kpt1[: self.config.num_kpt],
                    kpt2[: self.config.num_kpt],
                    desc1[: self.config.num_kpt],
                    desc2[: self.config.num_kpt],
                )

            # normalize kpt
            if self.config.input_normalize == "intrinsic":
                x1, x2 = np.concatenate(
                    [kpt1, np.ones([kpt1.shape[0], 1])], axis=-1
                ), np.concatenate([kpt2, np.ones([kpt2.shape[0], 1])], axis=-1)
                x1, x2 = (
                    np.matmul(np.linalg.inv(K1), x1.T).T[:, :2],
                    np.matmul(np.linalg.inv(K2), x2.T).T[:, :2],
                )
            elif self.config.input_normalize == "img":
                x1, x2 = (kpt1 - size1 / 2) / size1, (kpt2 - size2 / 2) / size2
                S1_inv, S2_inv = np.asarray(
                    [
                        [size1[0], 0, 0.5 * size1[0]],
                        [0, size1[1], 0.5 * size1[1]],
                        [0, 0, 1],
                    ]
                ), np.asarray(
                    [
                        [size2[0], 0, 0.5 * size2[0]],
                        [0, size2[1], 0.5 * size2[1]],
                        [0, 0, 1],
                    ]
                )
                M1, M2 = np.matmul(np.linalg.inv(K1), S1_inv), np.matmul(
                    np.linalg.inv(K2), S2_inv
                )
                egt = np.matmul(np.matmul(M2.transpose(), egt), M1)
                egt = egt / np.linalg.norm(egt)
            else:
                raise NotImplementedError

            corr = data["corr"][str(index_within_seq)][()]
            incorr1, incorr2 = (
                data["incorr1"][str(index_within_seq)][()],
                data["incorr2"][str(index_within_seq)][()],
            )

        # permute kpt
        valid_corr = corr[corr.max(axis=-1) < self.config.num_kpt]
        valid_incorr1, valid_incorr2 = (
            incorr1[incorr1 < self.config.num_kpt],
            incorr2[incorr2 < self.config.num_kpt],
        )
        num_corr, num_incorr1, num_incorr2 = (
            len(valid_corr),
            len(valid_incorr1),
            len(valid_incorr2),
        )
        mask1_invlaid, mask2_invalid = np.ones(x1.shape[0]).astype(bool), np.ones(
            x2.shape[0]
        ).astype(bool)
        mask1_invlaid[valid_corr[:, 0]] = False
        mask2_invalid[valid_corr[:, 1]] = False
        mask1_invlaid[valid_incorr1] = False
        mask2_invalid[valid_incorr2] = False
        invalid_index1, invalid_index2 = (
            np.nonzero(mask1_invlaid)[0],
            np.nonzero(mask2_invalid)[0],
        )

        # random sample from point w/o valid annotation
        cur_kpt1 = self.config.num_kpt - num_corr - num_incorr1
        cur_kpt2 = self.config.num_kpt - num_corr - num_incorr2

        if invalid_index1.shape[0] < cur_kpt1:
            sub_idx1 = np.concatenate(
                [
                    np.arange(len(invalid_index1)),
                    np.random.randint(
                        len(invalid_index1), size=cur_kpt1 - len(invalid_index1)
                    ),
                ]
            )
        if invalid_index1.shape[0] >= cur_kpt1:
            sub_idx1 = np.random.choice(len(invalid_index1), cur_kpt1, replace=False)
        if invalid_index2.shape[0] < cur_kpt2:
            sub_idx2 = np.concatenate(
                [
                    np.arange(len(invalid_index2)),
                    np.random.randint(
                        len(invalid_index2), size=cur_kpt2 - len(invalid_index2)
                    ),
                ]
            )
        if invalid_index2.shape[0] >= cur_kpt2:
            sub_idx2 = np.random.choice(len(invalid_index2), cur_kpt2, replace=False)

        per_idx1, per_idx2 = np.concatenate(
            [valid_corr[:, 0], valid_incorr1, invalid_index1[sub_idx1]]
        ), np.concatenate([valid_corr[:, 1], valid_incorr2, invalid_index2[sub_idx2]])

        pscore1, pscore2 = (
            pscore1[per_idx1][:, np.newaxis],
            pscore2[per_idx2][:, np.newaxis],
        )
        x1, x2 = x1[per_idx1][:, :2], x2[per_idx2][:, :2]
        desc1, desc2 = desc1[per_idx1], desc2[per_idx2]
        kpt1, kpt2 = kpt1[per_idx1], kpt2[per_idx2]

        return {
            "x1": x1,
            "x2": x2,
            "kpt1": kpt1,
            "kpt2": kpt2,
            "desc1": desc1,
            "desc2": desc2,
            "num_corr": num_corr,
            "num_incorr1": num_incorr1,
            "num_incorr2": num_incorr2,
            "e_gt": egt,
            "pscore1": pscore1,
            "pscore2": pscore2,
            "img_path1": img_path1,
            "img_path2": img_path2,
        }

    def __len__(self):
        return self.total_pairs