File size: 6,235 Bytes
a80d6bb
 
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
c74a070
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
 
 
a80d6bb
c74a070
a80d6bb
c74a070
 
 
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
 
 
c74a070
 
 
 
 
a80d6bb
c74a070
 
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
import sys
import os

ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, ROOT_DIR)

from utils import evaluation_utils, metrics, fm_utils
import cv2


class auc_eval:
    def __init__(self, config):
        self.config = config
        self.err_r, self.err_t, self.err = [], [], []
        self.ms = []
        self.precision = []

    def run(self, info):
        E, r_gt, t_gt = info["e"], info["r_gt"], info["t_gt"]
        K1, K2, img1, img2 = info["K1"], info["K2"], info["img1"], info["img2"]
        corr1, corr2 = info["corr1"], info["corr2"]
        corr1, corr2 = evaluation_utils.normalize_intrinsic(
            corr1, K1
        ), evaluation_utils.normalize_intrinsic(corr2, K2)
        size1, size2 = max(img1.shape), max(img2.shape)
        scale1, scale2 = self.config["rescale"] / size1, self.config["rescale"] / size2
        # ransac
        ransac_th = 4.0 / (
            (K1[0, 0] + K1[1, 1]) * scale1 + (K2[0, 0] + K2[1, 1]) * scale2
        )
        R_hat, t_hat, E_hat = self.estimate(corr1, corr2, ransac_th)
        # get pose error
        err_r, err_t = metrics.evaluate_R_t(r_gt, t_gt, R_hat, t_hat)
        err = max(err_r, err_t)

        if len(corr1) > 1:
            inlier_mask = metrics.compute_epi_inlier(
                corr1, corr2, E, self.config["inlier_th"]
            )
            precision = inlier_mask.mean()
            ms = inlier_mask.sum() / len(info["x1"])
        else:
            ms = precision = 0

        return {
            "err_r": err_r,
            "err_t": err_t,
            "err": err,
            "ms": ms,
            "precision": precision,
        }

    def res_inqueue(self, res):
        self.err_r.append(res["err_r"]), self.err_t.append(
            res["err_t"]
        ), self.err.append(res["err"])
        self.ms.append(res["ms"]), self.precision.append(res["precision"])

    def estimate(self, corr1, corr2, th):
        num_inlier = -1
        if corr1.shape[0] >= 5:
            E, mask_new = cv2.findEssentialMat(
                corr1, corr2, method=cv2.RANSAC, threshold=th, prob=1 - 1e-5
            )
            if E is None:
                E = [np.eye(3)]
            for _E in np.split(E, len(E) / 3):
                _num_inlier, _R, _t, _ = cv2.recoverPose(
                    _E, corr1, corr2, np.eye(3), 1e9, mask=mask_new
                )
                if _num_inlier > num_inlier:
                    num_inlier = _num_inlier
                    R = _R
                    t = _t
                    E = _E
        else:
            E, R, t = np.eye(3), np.eye(3), np.zeros(3)
        return R, t, E

    def parse(self):
        ths = np.arange(7) * 5
        approx_auc = metrics.approx_pose_auc(self.err, ths)
        exact_auc = metrics.pose_auc(self.err, ths)
        mean_pre, mean_ms = np.mean(np.asarray(self.precision)), np.mean(
            np.asarray(self.ms)
        )

        print("auc th: ", ths[1:])
        print("approx auc: ", approx_auc)
        print("exact auc: ", exact_auc)
        print("mean match score: ", mean_ms * 100)
        print("mean precision: ", mean_pre * 100)


class FMbench_eval:
    def __init__(self, config):
        self.config = config
        self.pre, self.pre_post, self.sgd = [], [], []
        self.num_corr, self.num_corr_post = [], []

    def run(self, info):
        corr1, corr2 = info["corr1"], info["corr2"]
        F = info["f"]
        img1, img2 = info["img1"], info["img2"]

        if len(corr1) > 1:
            pre_bf = fm_utils.compute_inlier_rate(
                corr1,
                corr2,
                np.flip(img1.shape[:2]),
                np.flip(img2.shape[:2]),
                F,
                th=self.config["inlier_th"],
            ).mean()
            F_hat, mask_F = cv2.findFundamentalMat(
                corr1,
                corr2,
                method=cv2.FM_RANSAC,
                ransacReprojThreshold=1,
                confidence=1 - 1e-5,
            )
            if F_hat is None:
                F_hat = np.ones([3, 3])
                mask_F = np.ones([len(corr1)]).astype(bool)
            else:
                mask_F = mask_F.squeeze().astype(bool)
            F_hat = F_hat[:3]
            pre_af = fm_utils.compute_inlier_rate(
                corr1[mask_F],
                corr2[mask_F],
                np.flip(img1.shape[:2]),
                np.flip(img2.shape[:2]),
                F,
                th=self.config["inlier_th"],
            ).mean()
            num_corr_af = mask_F.sum()
            num_corr = len(corr1)
            sgd = fm_utils.compute_SGD(
                F, F_hat, np.flip(img1.shape[:2]), np.flip(img2.shape[:2])
            )
        else:
            pre_bf, pre_af, sgd = 0, 0, 1e8
            num_corr, num_corr_af = 0, 0
        return {
            "pre": pre_bf,
            "pre_post": pre_af,
            "sgd": sgd,
            "num_corr": num_corr,
            "num_corr_post": num_corr_af,
        }

    def res_inqueue(self, res):
        self.pre.append(res["pre"]), self.pre_post.append(
            res["pre_post"]
        ), self.sgd.append(res["sgd"])
        self.num_corr.append(res["num_corr"]), self.num_corr_post.append(
            res["num_corr_post"]
        )

    def parse(self):
        for seq_index in range(len(self.config["seq"])):
            seq = self.config["seq"][seq_index]
            offset = seq_index * 1000
            pre = np.asarray(self.pre)[offset : offset + 1000].mean()
            pre_post = np.asarray(self.pre_post)[offset : offset + 1000].mean()
            num_corr = np.asarray(self.num_corr)[offset : offset + 1000].mean()
            num_corr_post = np.asarray(self.num_corr_post)[
                offset : offset + 1000
            ].mean()
            f_recall = (
                np.asarray(self.sgd)[offset : offset + 1000]
                < self.config["sgd_inlier_th"]
            ).mean()

            print(seq, "results:")
            print("F_recall: ", f_recall)
            print("precision: ", pre)
            print("precision_post: ", pre_post)
            print("num_corr: ", num_corr)
            print("num_corr_post: ", num_corr_post, "\n")