Spaces:
Sleeping
Sleeping
File size: 5,724 Bytes
2c8b554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import cv2
from sys import exit
import torch
import torch.nn.functional as F
from lib.utils import (
grid_positions,
upscale_positions,
downscale_positions,
savefig,
imshow_image
)
from lib.exceptions import NoGradientError, EmptyTensorError
matplotlib.use('Agg')
def loss_function(
model, batch, device, margin=1, safe_radius=4, scaling_steps=3, plot=False, plot_path=None
):
output = model({
'image1': batch['image1'].to(device),
'image2': batch['image2'].to(device)
})
loss = torch.tensor(np.array([0], dtype=np.float32), device=device)
has_grad = False
n_valid_samples = 0
for idx_in_batch in range(batch['image1'].size(0)):
# Network output
dense_features1 = output['dense_features1'][idx_in_batch]
c, h1, w1 = dense_features1.size()
scores1 = output['scores1'][idx_in_batch].view(-1)
dense_features2 = output['dense_features2'][idx_in_batch]
_, h2, w2 = dense_features2.size()
scores2 = output['scores2'][idx_in_batch]
all_descriptors1 = F.normalize(dense_features1.view(c, -1), dim=0)
descriptors1 = all_descriptors1
all_descriptors2 = F.normalize(dense_features2.view(c, -1), dim=0)
fmap_pos1 = grid_positions(h1, w1, device)
pos1 = batch['pos1'][idx_in_batch].to(device)
pos2 = batch['pos2'][idx_in_batch].to(device)
ids = idsAlign(pos1, device, h1, w1)
fmap_pos1 = fmap_pos1[:, ids]
descriptors1 = descriptors1[:, ids]
scores1 = scores1[ids]
# Skip the pair if not enough GT correspondences are available
if ids.size(0) < 128:
continue
# Descriptors at the corresponding positions
fmap_pos2 = torch.round(
downscale_positions(pos2, scaling_steps=scaling_steps)
).long()
descriptors2 = F.normalize(
dense_features2[:, fmap_pos2[0, :], fmap_pos2[1, :]],
dim=0
)
positive_distance = 2 - 2 * (
descriptors1.t().unsqueeze(1) @ descriptors2.t().unsqueeze(2)
).squeeze()
all_fmap_pos2 = grid_positions(h2, w2, device)
position_distance = torch.max(
torch.abs(
fmap_pos2.unsqueeze(2).float() -
all_fmap_pos2.unsqueeze(1)
),
dim=0
)[0]
is_out_of_safe_radius = position_distance > safe_radius
distance_matrix = 2 - 2 * (descriptors1.t() @ all_descriptors2)
negative_distance2 = torch.min(
distance_matrix + (1 - is_out_of_safe_radius.float()) * 10.,
dim=1
)[0]
all_fmap_pos1 = grid_positions(h1, w1, device)
position_distance = torch.max(
torch.abs(
fmap_pos1.unsqueeze(2).float() -
all_fmap_pos1.unsqueeze(1)
),
dim=0
)[0]
is_out_of_safe_radius = position_distance > safe_radius
distance_matrix = 2 - 2 * (descriptors2.t() @ all_descriptors1)
negative_distance1 = torch.min(
distance_matrix + (1 - is_out_of_safe_radius.float()) * 10.,
dim=1
)[0]
diff = positive_distance - torch.min(
negative_distance1, negative_distance2
)
scores2 = scores2[fmap_pos2[0, :], fmap_pos2[1, :]]
loss = loss + (
torch.sum(scores1 * scores2 * F.relu(margin + diff)) /
(torch.sum(scores1 * scores2) )
)
has_grad = True
n_valid_samples += 1
if plot and batch['batch_idx'] % batch['log_interval'] == 0:
drawTraining(batch['image1'], batch['image2'], pos1, pos2, batch, idx_in_batch, output, save=True, plot_path=plot_path)
if not has_grad:
raise NoGradientError
loss = loss / (n_valid_samples )
return loss
def idsAlign(pos1, device, h1, w1):
pos1D = downscale_positions(pos1, scaling_steps=3)
row = pos1D[0, :]
col = pos1D[1, :]
ids = []
for i in range(row.shape[0]):
index = ((w1) * (row[i])) + (col[i])
ids.append(index)
ids = torch.round(torch.Tensor(ids)).long().to(device)
return ids
def drawTraining(image1, image2, pos1, pos2, batch, idx_in_batch, output, save=False, plot_path="train_viz"):
pos1_aux = pos1.cpu().numpy()
pos2_aux = pos2.cpu().numpy()
k = pos1_aux.shape[1]
col = np.random.rand(k, 3)
n_sp = 4
plt.figure()
plt.subplot(1, n_sp, 1)
im1 = imshow_image(
image1[0].cpu().numpy(),
preprocessing=batch['preprocessing']
)
plt.imshow(im1)
plt.scatter(
pos1_aux[1, :], pos1_aux[0, :],
s=0.25**2, c=col, marker=',', alpha=0.5
)
plt.axis('off')
plt.subplot(1, n_sp, 2)
plt.imshow(
output['scores1'][idx_in_batch].data.cpu().numpy(),
cmap='Reds'
)
plt.axis('off')
plt.subplot(1, n_sp, 3)
im2 = imshow_image(
image2[0].cpu().numpy(),
preprocessing=batch['preprocessing']
)
plt.imshow(im2)
plt.scatter(
pos2_aux[1, :], pos2_aux[0, :],
s=0.25**2, c=col, marker=',', alpha=0.5
)
plt.axis('off')
plt.subplot(1, n_sp, 4)
plt.imshow(
output['scores2'][idx_in_batch].data.cpu().numpy(),
cmap='Reds'
)
plt.axis('off')
if(save == True):
savefig(plot_path+'/%s.%02d.%02d.%d.png' % (
'train' if batch['train'] else 'valid',
batch['epoch_idx'],
batch['batch_idx'] // batch['log_interval'],
idx_in_batch
), dpi=300)
else:
plt.show()
plt.close()
im1 = cv2.cvtColor(im1, cv2.COLOR_BGR2RGB)
im2 = cv2.cvtColor(im2, cv2.COLOR_BGR2RGB)
for i in range(0, pos1_aux.shape[1], 5):
im1 = cv2.circle(im1, (pos1_aux[1, i], pos1_aux[0, i]), 1, (0, 0, 255), 2)
for i in range(0, pos2_aux.shape[1], 5):
im2 = cv2.circle(im2, (pos2_aux[1, i], pos2_aux[0, i]), 1, (0, 0, 255), 2)
im3 = cv2.hconcat([im1, im2])
for i in range(0, pos1_aux.shape[1], 5):
im3 = cv2.line(im3, (int(pos1_aux[1, i]), int(pos1_aux[0, i])), (int(pos2_aux[1, i]) + im1.shape[1], int(pos2_aux[0, i])), (0, 255, 0), 1)
if(save == True):
cv2.imwrite(plot_path+'/%s.%02d.%02d.%d.png' % (
'train_corr' if batch['train'] else 'valid',
batch['epoch_idx'],
batch['batch_idx'] // batch['log_interval'],
idx_in_batch
), im3)
else:
cv2.imshow('Image', im3)
cv2.waitKey(0) |