File size: 13,271 Bytes
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e15a186
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e15a186
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dde81
 
9223079
 
 
 
 
 
 
 
 
 
 
6cb641c
 
fe82065
e15a186
9223079
 
 
 
 
 
 
 
e15a186
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import numpy as np
import torch
import torchvision.transforms.functional as F
from types import SimpleNamespace
from .extract_features import read_image, resize_image
import cv2

device = "cuda" if torch.cuda.is_available() else "cpu"

confs = {
    # Best quality but loads of points. Only use for small scenes
    "loftr": {
        "output": "matches-loftr",
        "model": {
            "name": "loftr",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": True,
            "resize_max": 1024,
            "dfactor": 8,
            "width": 640,
            "height": 480,
            "force_resize": True,
        },
        "max_error": 1,  # max error for assigned keypoints (in px)
        "cell_size": 1,  # size of quantization patch (max 1 kp/patch)
    },
    # Semi-scalable loftr which limits detected keypoints
    "loftr_aachen": {
        "output": "matches-loftr_aachen",
        "model": {
            "name": "loftr",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {"grayscale": True, "resize_max": 1024, "dfactor": 8},
        "max_error": 2,  # max error for assigned keypoints (in px)
        "cell_size": 8,  # size of quantization patch (max 1 kp/patch)
    },
    # Use for matching superpoint feats with loftr
    "loftr_superpoint": {
        "output": "matches-loftr_aachen",
        "model": {
            "name": "loftr",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {"grayscale": True, "resize_max": 1024, "dfactor": 8},
        "max_error": 4,  # max error for assigned keypoints (in px)
        "cell_size": 4,  # size of quantization patch (max 1 kp/patch)
    },
    # Use topicfm for matching feats
    "topicfm": {
        "output": "matches-topicfm",
        "model": {
            "name": "topicfm",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1024,
            "dfactor": 8,
            "width": 640,
            "height": 480,
        },
    },
    # Use topicfm for matching feats
    "aspanformer": {
        "output": "matches-aspanformer",
        "model": {
            "name": "aspanformer",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1024,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "dkm": {
        "output": "matches-dkm",
        "model": {
            "name": "dkm",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1024,
            "width": 80,
            "height": 60,
            "dfactor": 8,
        },
    },
    "roma": {
        "output": "matches-roma",
        "model": {
            "name": "roma",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1024,
            "width": 320,
            "height": 240,
            "dfactor": 8,
        },
    },
    "dedode_sparse": {
        "output": "matches-dedode",
        "model": {
            "name": "dedode",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
            "dense": False,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1024,
            "width": 768,
            "height": 768,
            "dfactor": 8,
        },
    },
    "sold2": {
        "output": "matches-sold2",
        "model": {
            "name": "sold2",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1024,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "gluestick": {
        "output": "matches-gluestick",
        "model": {
            "name": "gluestick",
            "use_lines": True,
            "max_keypoints": 1000,
            "max_lines": 300,
            "force_num_keypoints": False,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1024,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
}


def scale_keypoints(kpts, scale):
    if np.any(scale != 1.0):
        kpts *= kpts.new_tensor(scale)
    return kpts


def scale_lines(lines, scale):
    if np.any(scale != 1.0):
        lines *= lines.new_tensor(scale)
    return lines


def match(model, path_0, path_1, conf):
    default_conf = {
        "grayscale": True,
        "resize_max": 1024,
        "dfactor": 8,
        "cache_images": False,
        "force_resize": False,
        "width": 320,
        "height": 240,
    }

    def preprocess(image: np.ndarray):
        image = image.astype(np.float32, copy=False)
        size = image.shape[:2][::-1]
        scale = np.array([1.0, 1.0])
        if conf.resize_max:
            scale = conf.resize_max / max(size)
            if scale < 1.0:
                size_new = tuple(int(round(x * scale)) for x in size)
                image = resize_image(image, size_new, "cv2_area")
                scale = np.array(size) / np.array(size_new)
        if conf.force_resize:
            size = image.shape[:2][::-1]
            image = resize_image(image, (conf.width, conf.height), "cv2_area")
            size_new = (conf.width, conf.height)
            scale = np.array(size) / np.array(size_new)
        if conf.grayscale:
            assert image.ndim == 2, image.shape
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = torch.from_numpy(image / 255.0).float()
        # assure that the size is divisible by dfactor
        size_new = tuple(
            map(
                lambda x: int(x // conf.dfactor * conf.dfactor),
                image.shape[-2:],
            )
        )
        image = F.resize(image, size=size_new, antialias=True)
        scale = np.array(size) / np.array(size_new)[::-1]
        return image, scale

    conf = SimpleNamespace(**{**default_conf, **conf})
    image0 = read_image(path_0, conf.grayscale)
    image1 = read_image(path_1, conf.grayscale)
    image0, scale0 = preprocess(image0)
    image1, scale1 = preprocess(image1)
    image0 = image0.to(device)[None]
    image1 = image1.to(device)[None]
    pred = model({"image0": image0, "image1": image1})

    # Rescale keypoints and move to cpu
    kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
    kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5
    kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5

    ret = {
        "image0": image0.squeeze().cpu().numpy(),
        "image1": image1.squeeze().cpu().numpy(),
        "keypoints0": kpts0.cpu().numpy(),
        "keypoints1": kpts1.cpu().numpy(),
    }
    if "mconf" in pred.keys():
        ret["mconf"] = pred["mconf"].cpu().numpy()
    return ret


@torch.no_grad()
def match_images(model, image_0, image_1, conf, device="cpu"):
    default_conf = {
        "grayscale": True,
        "resize_max": 1024,
        "dfactor": 8,
        "cache_images": False,
        "force_resize": False,
        "width": 320,
        "height": 240,
    }

    def preprocess(image: np.ndarray):
        image = image.astype(np.float32, copy=False)
        size = image.shape[:2][::-1]
        scale = np.array([1.0, 1.0])
        if conf.resize_max:
            scale = conf.resize_max / max(size)
            if scale < 1.0:
                size_new = tuple(int(round(x * scale)) for x in size)
                image = resize_image(image, size_new, "cv2_area")
                scale = np.array(size) / np.array(size_new)
        if conf.force_resize:
            size = image.shape[:2][::-1]
            image = resize_image(image, (conf.width, conf.height), "cv2_area")
            size_new = (conf.width, conf.height)
            scale = np.array(size) / np.array(size_new)
        if conf.grayscale:
            assert image.ndim == 2, image.shape
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = torch.from_numpy(image / 255.0).float()

        # assure that the size is divisible by dfactor
        size_new = tuple(
            map(
                lambda x: int(x // conf.dfactor * conf.dfactor),
                image.shape[-2:],
            )
        )
        image = F.resize(image, size=size_new)
        scale = np.array(size) / np.array(size_new)[::-1]
        return image, scale

    conf = SimpleNamespace(**{**default_conf, **conf})

    if len(image_0.shape) == 3 and conf.grayscale:
        image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY)
    else:
        image0 = image_0
    if len(image_0.shape) == 3 and conf.grayscale:
        image1 = cv2.cvtColor(image_1, cv2.COLOR_RGB2GRAY)
    else:
        image1 = image_1

    # comment following lines, image is always RGB mode
    # if not conf.grayscale and len(image0.shape) == 3:
    #     image0 = image0[:, :, ::-1]  # BGR to RGB
    # if not conf.grayscale and len(image1.shape) == 3:
    #     image1 = image1[:, :, ::-1]  # BGR to RGB

    image0, scale0 = preprocess(image0)
    image1, scale1 = preprocess(image1)
    image0 = image0.to(device)[None]
    image1 = image1.to(device)[None]
    pred = model({"image0": image0, "image1": image1})

    s0 = np.array(image_0.shape[:2][::-1]) / np.array(image0.shape[-2:][::-1])
    s1 = np.array(image_1.shape[:2][::-1]) / np.array(image1.shape[-2:][::-1])

    # Rescale keypoints and move to cpu
    if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
        kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
        kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5
        kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5

        ret = {
            "image0": image0.squeeze().cpu().numpy(),
            "image1": image1.squeeze().cpu().numpy(),
            "image0_orig": image_0,
            "image1_orig": image_1,
            "keypoints0": kpts0_origin.cpu().numpy(),
            "keypoints1": kpts1_origin.cpu().numpy(),
            "keypoints0_orig": kpts0_origin.cpu().numpy(),
            "keypoints1_orig": kpts1_origin.cpu().numpy(),
            "original_size0": np.array(image_0.shape[:2][::-1]),
            "original_size1": np.array(image_1.shape[:2][::-1]),
            "new_size0": np.array(image0.shape[-2:][::-1]),
            "new_size1": np.array(image1.shape[-2:][::-1]),
            "scale0": s0,
            "scale1": s1,
        }
        if "mconf" in pred.keys():
            ret["mconf"] = pred["mconf"].cpu().numpy()
        elif "scores" in pred.keys(): #adapting loftr
            ret["mconf"] = pred["scores"].cpu().numpy()
        else:
            ret["mconf"] = np.ones_like(kpts0.cpu().numpy()[:, 0])
    if "lines0" in pred.keys() and "lines1" in pred.keys():
        if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
            kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
            kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5
            kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5
            kpts0_origin = kpts0_origin.cpu().numpy()
            kpts1_origin = kpts1_origin.cpu().numpy()
        else:
            kpts0_origin, kpts1_origin = (
                None,
                None,
            )  # np.zeros([0]), np.zeros([0])
        lines0, lines1 = pred["lines0"], pred["lines1"]
        lines0_raw, lines1_raw = pred["raw_lines0"], pred["raw_lines1"]

        lines0_raw = torch.from_numpy(lines0_raw.copy())
        lines1_raw = torch.from_numpy(lines1_raw.copy())
        lines0_raw = scale_lines(lines0_raw + 0.5, s0) - 0.5
        lines1_raw = scale_lines(lines1_raw + 0.5, s1) - 0.5

        lines0 = torch.from_numpy(lines0.copy())
        lines1 = torch.from_numpy(lines1.copy())
        lines0 = scale_lines(lines0 + 0.5, s0) - 0.5
        lines1 = scale_lines(lines1 + 0.5, s1) - 0.5

        ret = {
            "image0_orig": image_0,
            "image1_orig": image_1,
            "line0": lines0_raw.cpu().numpy(),
            "line1": lines1_raw.cpu().numpy(),
            "line0_orig": lines0.cpu().numpy(),
            "line1_orig": lines1.cpu().numpy(),
            "line_keypoints0_orig": kpts0_origin,
            "line_keypoints1_orig": kpts1_origin,
        }
    del pred
    torch.cuda.empty_cache()
    return ret