File size: 8,542 Bytes
c608946
 
 
 
 
 
 
 
 
c74a070
c608946
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
c608946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c608946
c74a070
c608946
c74a070
c608946
 
 
 
c74a070
c608946
 
c74a070
 
 
c608946
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c608946
c74a070
 
c608946
 
 
 
c74a070
c608946
 
c74a070
 
c608946
c74a070
 
c608946
 
 
 
 
c74a070
c608946
c74a070
c608946
 
 
 
c74a070
c608946
 
 
 
 
 
c74a070
c608946
 
c74a070
 
 
 
 
 
 
 
 
 
c608946
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
c608946
 
c74a070
c608946
 
c74a070
 
 
 
 
 
c608946
c74a070
 
 
 
 
 
 
c608946
 
c74a070
 
 
 
 
 
 
c608946
c74a070
c608946
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
c608946
 
c74a070
 
 
 
 
 
 
 
c608946
c74a070
c608946
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from einops.einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
from roma.utils.utils import get_gt_warp
import wandb
import roma
import math


class RobustLosses(nn.Module):
    def __init__(
        self,
        robust=False,
        center_coords=False,
        scale_normalize=False,
        ce_weight=0.01,
        local_loss=True,
        local_dist=4.0,
        local_largest_scale=8,
        smooth_mask=False,
        depth_interpolation_mode="bilinear",
        mask_depth_loss=False,
        relative_depth_error_threshold=0.05,
        alpha=1.0,
        c=1e-3,
    ):
        super().__init__()
        self.robust = robust  # measured in pixels
        self.center_coords = center_coords
        self.scale_normalize = scale_normalize
        self.ce_weight = ce_weight
        self.local_loss = local_loss
        self.local_dist = local_dist
        self.local_largest_scale = local_largest_scale
        self.smooth_mask = smooth_mask
        self.depth_interpolation_mode = depth_interpolation_mode
        self.mask_depth_loss = mask_depth_loss
        self.relative_depth_error_threshold = relative_depth_error_threshold
        self.avg_overlap = dict()
        self.alpha = alpha
        self.c = c

    def gm_cls_loss(self, x2, prob, scale_gm_cls, gm_certainty, scale):
        with torch.no_grad():
            B, C, H, W = scale_gm_cls.shape
            device = x2.device
            cls_res = round(math.sqrt(C))
            G = torch.meshgrid(
                *[
                    torch.linspace(
                        -1 + 1 / cls_res, 1 - 1 / cls_res, steps=cls_res, device=device
                    )
                    for _ in range(2)
                ]
            )
            G = torch.stack((G[1], G[0]), dim=-1).reshape(C, 2)
            GT = (
                (G[None, :, None, None, :] - x2[:, None])
                .norm(dim=-1)
                .min(dim=1)
                .indices
            )
        cls_loss = F.cross_entropy(scale_gm_cls, GT, reduction="none")[prob > 0.99]
        if not torch.any(cls_loss):
            cls_loss = certainty_loss * 0.0  # Prevent issues where prob is 0 everywhere

        certainty_loss = F.binary_cross_entropy_with_logits(gm_certainty[:, 0], prob)
        losses = {
            f"gm_certainty_loss_{scale}": certainty_loss.mean(),
            f"gm_cls_loss_{scale}": cls_loss.mean(),
        }
        wandb.log(losses, step=roma.GLOBAL_STEP)
        return losses

    def delta_cls_loss(
        self, x2, prob, flow_pre_delta, delta_cls, certainty, scale, offset_scale
    ):
        with torch.no_grad():
            B, C, H, W = delta_cls.shape
            device = x2.device
            cls_res = round(math.sqrt(C))
            G = torch.meshgrid(
                *[
                    torch.linspace(
                        -1 + 1 / cls_res, 1 - 1 / cls_res, steps=cls_res, device=device
                    )
                    for _ in range(2)
                ]
            )
            G = torch.stack((G[1], G[0]), dim=-1).reshape(C, 2) * offset_scale
            GT = (
                (G[None, :, None, None, :] + flow_pre_delta[:, None] - x2[:, None])
                .norm(dim=-1)
                .min(dim=1)
                .indices
            )
        cls_loss = F.cross_entropy(delta_cls, GT, reduction="none")[prob > 0.99]
        if not torch.any(cls_loss):
            cls_loss = certainty_loss * 0.0  # Prevent issues where prob is 0 everywhere
        certainty_loss = F.binary_cross_entropy_with_logits(certainty[:, 0], prob)
        losses = {
            f"delta_certainty_loss_{scale}": certainty_loss.mean(),
            f"delta_cls_loss_{scale}": cls_loss.mean(),
        }
        wandb.log(losses, step=roma.GLOBAL_STEP)
        return losses

    def regression_loss(self, x2, prob, flow, certainty, scale, eps=1e-8, mode="delta"):
        epe = (flow.permute(0, 2, 3, 1) - x2).norm(dim=-1)
        if scale == 1:
            pck_05 = (epe[prob > 0.99] < 0.5 * (2 / 512)).float().mean()
            wandb.log({"train_pck_05": pck_05}, step=roma.GLOBAL_STEP)

        ce_loss = F.binary_cross_entropy_with_logits(certainty[:, 0], prob)
        a = self.alpha
        cs = self.c * scale
        x = epe[prob > 0.99]
        reg_loss = cs**a * ((x / (cs)) ** 2 + 1**2) ** (a / 2)
        if not torch.any(reg_loss):
            reg_loss = ce_loss * 0.0  # Prevent issues where prob is 0 everywhere
        losses = {
            f"{mode}_certainty_loss_{scale}": ce_loss.mean(),
            f"{mode}_regression_loss_{scale}": reg_loss.mean(),
        }
        wandb.log(losses, step=roma.GLOBAL_STEP)
        return losses

    def forward(self, corresps, batch):
        scales = list(corresps.keys())
        tot_loss = 0.0
        # scale_weights due to differences in scale for regression gradients and classification gradients
        scale_weights = {1: 1, 2: 1, 4: 1, 8: 1, 16: 1}
        for scale in scales:
            scale_corresps = corresps[scale]
            (
                scale_certainty,
                flow_pre_delta,
                delta_cls,
                offset_scale,
                scale_gm_cls,
                scale_gm_certainty,
                flow,
                scale_gm_flow,
            ) = (
                scale_corresps["certainty"],
                scale_corresps["flow_pre_delta"],
                scale_corresps.get("delta_cls"),
                scale_corresps.get("offset_scale"),
                scale_corresps.get("gm_cls"),
                scale_corresps.get("gm_certainty"),
                scale_corresps["flow"],
                scale_corresps.get("gm_flow"),
            )
            flow_pre_delta = rearrange(flow_pre_delta, "b d h w -> b h w d")
            b, h, w, d = flow_pre_delta.shape
            gt_warp, gt_prob = get_gt_warp(
                batch["im_A_depth"],
                batch["im_B_depth"],
                batch["T_1to2"],
                batch["K1"],
                batch["K2"],
                H=h,
                W=w,
            )
            x2 = gt_warp.float()
            prob = gt_prob

            if self.local_largest_scale >= scale:
                prob = prob * (
                    F.interpolate(prev_epe[:, None], size=(h, w), mode="nearest-exact")[
                        :, 0
                    ]
                    < (2 / 512) * (self.local_dist[scale] * scale)
                )

            if scale_gm_cls is not None:
                gm_cls_losses = self.gm_cls_loss(
                    x2, prob, scale_gm_cls, scale_gm_certainty, scale
                )
                gm_loss = (
                    self.ce_weight * gm_cls_losses[f"gm_certainty_loss_{scale}"]
                    + gm_cls_losses[f"gm_cls_loss_{scale}"]
                )
                tot_loss = tot_loss + scale_weights[scale] * gm_loss
            elif scale_gm_flow is not None:
                gm_flow_losses = self.regression_loss(
                    x2, prob, scale_gm_flow, scale_gm_certainty, scale, mode="gm"
                )
                gm_loss = (
                    self.ce_weight * gm_flow_losses[f"gm_certainty_loss_{scale}"]
                    + gm_flow_losses[f"gm_regression_loss_{scale}"]
                )
                tot_loss = tot_loss + scale_weights[scale] * gm_loss

            if delta_cls is not None:
                delta_cls_losses = self.delta_cls_loss(
                    x2,
                    prob,
                    flow_pre_delta,
                    delta_cls,
                    scale_certainty,
                    scale,
                    offset_scale,
                )
                delta_cls_loss = (
                    self.ce_weight * delta_cls_losses[f"delta_certainty_loss_{scale}"]
                    + delta_cls_losses[f"delta_cls_loss_{scale}"]
                )
                tot_loss = tot_loss + scale_weights[scale] * delta_cls_loss
            else:
                delta_regression_losses = self.regression_loss(
                    x2, prob, flow, scale_certainty, scale
                )
                reg_loss = (
                    self.ce_weight
                    * delta_regression_losses[f"delta_certainty_loss_{scale}"]
                    + delta_regression_losses[f"delta_regression_loss_{scale}"]
                )
                tot_loss = tot_loss + scale_weights[scale] * reg_loss
            prev_epe = (flow.permute(0, 2, 3, 1) - x2).norm(dim=-1).detach()
        return tot_loss