Spaces:
Sleeping
Sleeping
File size: 19,011 Bytes
a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import pdb
import numpy as np
from PIL import Image, ImageOps
import torchvision.transforms as tvf
import random
from math import ceil
from . import transforms_tools as F
"""
Example command to try out some transformation chain:
python -m tools.transforms --trfs "Scale(384), ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1), RandomRotation(10), RandomTilting(0.5, 'all'), RandomScale(240,320), RandomCrop(224)"
"""
def instanciate_transformation(cmd_line):
"""Create a sequence of transformations.
cmd_line: (str)
Comma-separated list of transformations.
Ex: "Rotate(10), Scale(256)"
"""
if not isinstance(cmd_line, str):
return cmd_line # already instanciated
cmd_line = "tvf.Compose([%s])" % cmd_line
try:
return eval(cmd_line)
except Exception as e:
print("Cannot interpret this transform list: %s\nReason: %s" % (cmd_line, e))
class Scale(object):
"""Rescale the input PIL.Image to a given size.
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py
The smallest dimension of the resulting image will be = size.
if largest == True: same behaviour for the largest dimension.
if not can_upscale: don't upscale
if not can_downscale: don't downscale
"""
def __init__(
self,
size,
interpolation=Image.BILINEAR,
largest=False,
can_upscale=True,
can_downscale=True,
):
assert isinstance(size, int) or (len(size) == 2)
self.size = size
self.interpolation = interpolation
self.largest = largest
self.can_upscale = can_upscale
self.can_downscale = can_downscale
def __repr__(self):
fmt_str = "RandomScale(%s" % str(self.size)
if self.largest:
fmt_str += ", largest=True"
if not self.can_upscale:
fmt_str += ", can_upscale=False"
if not self.can_downscale:
fmt_str += ", can_downscale=False"
return fmt_str + ")"
def get_params(self, imsize):
w, h = imsize
if isinstance(self.size, int):
cmp = lambda a, b: (a >= b) if self.largest else (a <= b)
if (cmp(w, h) and w == self.size) or (cmp(h, w) and h == self.size):
ow, oh = w, h
elif cmp(w, h):
ow = self.size
oh = int(self.size * h / w)
else:
oh = self.size
ow = int(self.size * w / h)
else:
ow, oh = self.size
return ow, oh
def __call__(self, inp):
img = F.grab_img(inp)
w, h = img.size
size2 = ow, oh = self.get_params(img.size)
if size2 != img.size:
a1, a2 = img.size, size2
if (self.can_upscale and min(a1) < min(a2)) or (
self.can_downscale and min(a1) > min(a2)
):
img = img.resize(size2, self.interpolation)
return F.update_img_and_labels(
inp, img, persp=(ow / w, 0, 0, 0, oh / h, 0, 0, 0)
)
class RandomScale(Scale):
"""Rescale the input PIL.Image to a random size.
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py
Args:
min_size (int): min size of the smaller edge of the picture.
max_size (int): max size of the smaller edge of the picture.
ar (float or tuple):
max change of aspect ratio (width/height).
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
"""
def __init__(
self,
min_size,
max_size,
ar=1,
can_upscale=False,
can_downscale=True,
interpolation=Image.BILINEAR,
):
Scale.__init__(
self,
0,
can_upscale=can_upscale,
can_downscale=can_downscale,
interpolation=interpolation,
)
assert type(min_size) == type(
max_size
), "min_size and max_size can only be 2 ints or 2 floats"
assert (
isinstance(min_size, int)
and min_size >= 1
or isinstance(min_size, float)
and min_size > 0
)
assert isinstance(max_size, (int, float)) and min_size <= max_size
self.min_size = min_size
self.max_size = max_size
if type(ar) in (float, int):
ar = (min(1 / ar, ar), max(1 / ar, ar))
assert 0.2 < ar[0] <= ar[1] < 5
self.ar = ar
def get_params(self, imsize):
w, h = imsize
if isinstance(self.min_size, float):
min_size = int(self.min_size * min(w, h) + 0.5)
if isinstance(self.max_size, float):
max_size = int(self.max_size * min(w, h) + 0.5)
if isinstance(self.min_size, int):
min_size = self.min_size
if isinstance(self.max_size, int):
max_size = self.max_size
if not self.can_upscale:
max_size = min(max_size, min(w, h))
size = int(0.5 + F.rand_log_uniform(min_size, max_size))
ar = F.rand_log_uniform(*self.ar) # change of aspect ratio
if w < h: # image is taller
ow = size
oh = int(0.5 + size * h / w / ar)
if oh < min_size:
ow, oh = int(0.5 + ow * float(min_size) / oh), min_size
else: # image is wider
oh = size
ow = int(0.5 + size * w / h * ar)
if ow < min_size:
ow, oh = min_size, int(0.5 + oh * float(min_size) / ow)
assert ow >= min_size, "image too small (width=%d < min_size=%d)" % (
ow,
min_size,
)
assert oh >= min_size, "image too small (height=%d < min_size=%d)" % (
oh,
min_size,
)
return ow, oh
class RandomCrop(object):
"""Crop the given PIL Image at a random location.
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is 0, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively.
"""
def __init__(self, size, padding=0):
if isinstance(size, int):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
def __repr__(self):
return "RandomCrop(%s)" % str(self.size)
@staticmethod
def get_params(img, output_size):
w, h = img.size
th, tw = output_size
assert h >= th and w >= tw, "Image of %dx%d is too small for crop %dx%d" % (
w,
h,
tw,
th,
)
y = np.random.randint(0, h - th) if h > th else 0
x = np.random.randint(0, w - tw) if w > tw else 0
return x, y, tw, th
def __call__(self, inp):
img = F.grab_img(inp)
padl = padt = 0
if self.padding:
if F.is_pil_image(img):
img = ImageOps.expand(img, border=self.padding, fill=0)
else:
assert isinstance(img, F.DummyImg)
img = img.expand(border=self.padding)
if isinstance(self.padding, int):
padl = padt = self.padding
else:
padl, padt = self.padding[0:2]
i, j, tw, th = self.get_params(img, self.size)
img = img.crop((i, j, i + tw, j + th))
return F.update_img_and_labels(
inp, img, persp=(1, 0, padl - i, 0, 1, padt - j, 0, 0)
)
class CenterCrop(RandomCrop):
"""Crops the given PIL Image at the center.
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
@staticmethod
def get_params(img, output_size):
w, h = img.size
th, tw = output_size
y = int(0.5 + ((h - th) / 2.0))
x = int(0.5 + ((w - tw) / 2.0))
return x, y, tw, th
class RandomRotation(object):
"""Rescale the input PIL.Image to a random size.
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py
Args:
degrees (float):
rotation angle.
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
"""
def __init__(self, degrees, interpolation=Image.BILINEAR):
self.degrees = degrees
self.interpolation = interpolation
def __call__(self, inp):
img = F.grab_img(inp)
w, h = img.size
angle = np.random.uniform(-self.degrees, self.degrees)
img = img.rotate(angle, resample=self.interpolation)
w2, h2 = img.size
trf = F.translate(-w / 2, -h / 2)
trf = F.persp_mul(trf, F.rotate(-angle * np.pi / 180))
trf = F.persp_mul(trf, F.translate(w2 / 2, h2 / 2))
return F.update_img_and_labels(inp, img, persp=trf)
class RandomTilting(object):
"""Apply a random tilting (left, right, up, down) to the input PIL.Image
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py
Args:
maginitude (float):
maximum magnitude of the random skew (value between 0 and 1)
directions (string):
tilting directions allowed (all, left, right, up, down)
examples: "all", "left,right", "up-down-right"
"""
def __init__(self, magnitude, directions="all"):
self.magnitude = magnitude
self.directions = directions.lower().replace(",", " ").replace("-", " ")
def __repr__(self):
return "RandomTilt(%g, '%s')" % (self.magnitude, self.directions)
def __call__(self, inp):
img = F.grab_img(inp)
w, h = img.size
x1, y1, x2, y2 = 0, 0, h, w
original_plane = [(y1, x1), (y2, x1), (y2, x2), (y1, x2)]
max_skew_amount = max(w, h)
max_skew_amount = int(ceil(max_skew_amount * self.magnitude))
skew_amount = random.randint(1, max_skew_amount)
if self.directions == "all":
choices = [0, 1, 2, 3]
else:
dirs = ["left", "right", "up", "down"]
choices = []
for d in self.directions.split():
try:
choices.append(dirs.index(d))
except:
raise ValueError("Tilting direction %s not recognized" % d)
skew_direction = random.choice(choices)
# print('randomtitlting: ', skew_amount, skew_direction) # to debug random
if skew_direction == 0:
# Left Tilt
new_plane = [
(y1, x1 - skew_amount), # Top Left
(y2, x1), # Top Right
(y2, x2), # Bottom Right
(y1, x2 + skew_amount),
] # Bottom Left
elif skew_direction == 1:
# Right Tilt
new_plane = [
(y1, x1), # Top Left
(y2, x1 - skew_amount), # Top Right
(y2, x2 + skew_amount), # Bottom Right
(y1, x2),
] # Bottom Left
elif skew_direction == 2:
# Forward Tilt
new_plane = [
(y1 - skew_amount, x1), # Top Left
(y2 + skew_amount, x1), # Top Right
(y2, x2), # Bottom Right
(y1, x2),
] # Bottom Left
elif skew_direction == 3:
# Backward Tilt
new_plane = [
(y1, x1), # Top Left
(y2, x1), # Top Right
(y2 + skew_amount, x2), # Bottom Right
(y1 - skew_amount, x2),
] # Bottom Left
# To calculate the coefficients required by PIL for the perspective skew,
# see the following Stack Overflow discussion: https://goo.gl/sSgJdj
matrix = []
for p1, p2 in zip(new_plane, original_plane):
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
A = np.matrix(matrix, dtype=np.float)
B = np.array(original_plane).reshape(8)
homography = np.dot(np.linalg.pinv(A), B)
homography = tuple(np.array(homography).reshape(8))
# print(homography)
img = img.transform(
img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC
)
homography = np.linalg.pinv(
np.float32(homography + (1,)).reshape(3, 3)
).ravel()[:8]
return F.update_img_and_labels(inp, img, persp=tuple(homography))
RandomTilt = RandomTilting # redefinition
class Tilt(object):
"""Apply a known tilting to an image"""
def __init__(self, *homography):
assert len(homography) == 8
self.homography = homography
def __call__(self, inp):
img = F.grab_img(inp)
homography = self.homography
# print(homography)
img = img.transform(
img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC
)
homography = np.linalg.pinv(
np.float32(homography + (1,)).reshape(3, 3)
).ravel()[:8]
return F.update_img_and_labels(inp, img, persp=tuple(homography))
class StillTransform(object):
"""Takes and return an image, without changing its shape or geometry."""
def _transform(self, img):
raise NotImplementedError()
def __call__(self, inp):
img = F.grab_img(inp)
# transform the image (size should not change)
try:
img = self._transform(img)
except TypeError:
pass
return F.update_img_and_labels(inp, img, persp=(1, 0, 0, 0, 1, 0, 0, 0))
class PixelNoise(StillTransform):
"""Takes an image, and add random white noise."""
def __init__(self, ampl=20):
StillTransform.__init__(self)
assert 0 <= ampl < 255
self.ampl = ampl
def __repr__(self):
return "PixelNoise(%g)" % self.ampl
def _transform(self, img):
img = np.float32(img)
img += np.random.uniform(
0.5 - self.ampl / 2, 0.5 + self.ampl / 2, size=img.shape
)
return Image.fromarray(np.uint8(img.clip(0, 255)))
class ColorJitter(StillTransform):
"""Randomly change the brightness, contrast and saturation of an image.
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py
Args:
brightness (float): How much to jitter brightness. brightness_factor
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
contrast (float): How much to jitter contrast. contrast_factor
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
saturation (float): How much to jitter saturation. saturation_factor
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
hue(float): How much to jitter hue. hue_factor is chosen uniformly from
[-hue, hue]. Should be >=0 and <= 0.5.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
def __repr__(self):
return "ColorJitter(%g,%g,%g,%g)" % (
self.brightness,
self.contrast,
self.saturation,
self.hue,
)
@staticmethod
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness > 0:
brightness_factor = np.random.uniform(
max(0, 1 - brightness), 1 + brightness
)
transforms.append(
tvf.Lambda(lambda img: F.adjust_brightness(img, brightness_factor))
)
if contrast > 0:
contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast)
transforms.append(
tvf.Lambda(lambda img: F.adjust_contrast(img, contrast_factor))
)
if saturation > 0:
saturation_factor = np.random.uniform(
max(0, 1 - saturation), 1 + saturation
)
transforms.append(
tvf.Lambda(lambda img: F.adjust_saturation(img, saturation_factor))
)
if hue > 0:
hue_factor = np.random.uniform(-hue, hue)
transforms.append(tvf.Lambda(lambda img: F.adjust_hue(img, hue_factor)))
# print('colorjitter: ', brightness_factor, contrast_factor, saturation_factor, hue_factor) # to debug random seed
np.random.shuffle(transforms)
transform = tvf.Compose(transforms)
return transform
def _transform(self, img):
transform = self.get_params(
self.brightness, self.contrast, self.saturation, self.hue
)
return transform(img)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Script to try out and visualize transformations")
parser.add_argument("--img", type=str, default="imgs/test.png", help="input image")
parser.add_argument(
"--trfs", type=str, required=True, help="list of transformations"
)
parser.add_argument(
"--layout", type=int, nargs=2, default=(3, 3), help="nb of rows,cols"
)
args = parser.parse_args()
import os
args.img = args.img.replace("$HERE", os.path.dirname(__file__))
img = Image.open(args.img)
img = dict(img=img)
trfs = instanciate_transformation(args.trfs)
from matplotlib import pyplot as pl
pl.ion()
pl.subplots_adjust(0, 0, 1, 1)
nr, nc = args.layout
while True:
for j in range(nr):
for i in range(nc):
pl.subplot(nr, nc, i + j * nc + 1)
if i == j == 0:
img2 = img
else:
img2 = trfs(img.copy())
if isinstance(img2, dict):
img2 = img2["img"]
pl.imshow(img2)
pl.xlabel("%d x %d" % img2.size)
pl.xticks(())
pl.yticks(())
pdb.set_trace()
|