Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import cv2 | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.utils.data as data | |
from tqdm import tqdm | |
from copy import deepcopy | |
from torchvision.transforms import ToTensor | |
sys.path.append(os.path.join(os.path.dirname(__file__), "..")) | |
from alike import ALike, configs | |
dataset_root = "hseq/hpatches-sequences-release" | |
use_cuda = torch.cuda.is_available() | |
device = "cuda" if use_cuda else "cpu" | |
methods = ["alike-n", "alike-l", "alike-n-ms", "alike-l-ms"] | |
class HPatchesDataset(data.Dataset): | |
def __init__(self, root: str = dataset_root, alteration: str = "all"): | |
""" | |
Args: | |
root: dataset root path | |
alteration: # 'all', 'i' for illumination or 'v' for viewpoint | |
""" | |
assert Path(root).exists(), f"Dataset root path {root} dose not exist!" | |
self.root = root | |
# get all image file name | |
self.image0_list = [] | |
self.image1_list = [] | |
self.homographies = [] | |
folders = [x for x in Path(self.root).iterdir() if x.is_dir()] | |
self.seqs = [] | |
for folder in folders: | |
if alteration == "i" and folder.stem[0] != "i": | |
continue | |
if alteration == "v" and folder.stem[0] != "v": | |
continue | |
self.seqs.append(folder) | |
self.len = len(self.seqs) | |
assert self.len > 0, f"Can not find PatchDataset in path {self.root}" | |
def __getitem__(self, item): | |
folder = self.seqs[item] | |
imgs = [] | |
homos = [] | |
for i in range(1, 7): | |
img = cv2.imread(str(folder / f"{i}.ppm"), cv2.IMREAD_COLOR) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # HxWxC | |
imgs.append(img) | |
if i != 1: | |
homo = np.loadtxt(str(folder / f"H_1_{i}")).astype("float32") | |
homos.append(homo) | |
return imgs, homos, folder.stem | |
def __len__(self): | |
return self.len | |
def name(self): | |
return self.__class__ | |
def extract_multiscale( | |
model, | |
img, | |
scale_f=2**0.5, | |
min_scale=1.0, | |
max_scale=1.0, | |
min_size=0.0, | |
max_size=99999.0, | |
image_size_max=99999, | |
n_k=0, | |
sort=False, | |
): | |
H_, W_, three = img.shape | |
assert three == 3, "input image shape should be [HxWx3]" | |
old_bm = torch.backends.cudnn.benchmark | |
torch.backends.cudnn.benchmark = False # speedup | |
# ==================== image size constraint | |
image = deepcopy(img) | |
max_hw = max(H_, W_) | |
if max_hw > image_size_max: | |
ratio = float(image_size_max / max_hw) | |
image = cv2.resize(image, dsize=None, fx=ratio, fy=ratio) | |
# ==================== convert image to tensor | |
H, W, three = image.shape | |
image = ToTensor()(image).unsqueeze(0) | |
image = image.to(device) | |
s = 1.0 # current scale factor | |
keypoints, descriptors, scores, scores_maps, descriptor_maps = [], [], [], [], [] | |
while s + 0.001 >= max(min_scale, min_size / max(H, W)): | |
if s - 0.001 <= min(max_scale, max_size / max(H, W)): | |
nh, nw = image.shape[2:] | |
# extract descriptors | |
with torch.no_grad(): | |
descriptor_map, scores_map = model.extract_dense_map(image) | |
keypoints_, descriptors_, scores_, _ = model.dkd( | |
scores_map, descriptor_map | |
) | |
keypoints.append(keypoints_[0]) | |
descriptors.append(descriptors_[0]) | |
scores.append(scores_[0]) | |
s /= scale_f | |
# down-scale the image for next iteration | |
nh, nw = round(H * s), round(W * s) | |
image = torch.nn.functional.interpolate( | |
image, (nh, nw), mode="bilinear", align_corners=False | |
) | |
# restore value | |
torch.backends.cudnn.benchmark = old_bm | |
keypoints = torch.cat(keypoints) | |
descriptors = torch.cat(descriptors) | |
scores = torch.cat(scores) | |
keypoints = (keypoints + 1) / 2 * keypoints.new_tensor([[W_ - 1, H_ - 1]]) | |
if sort or 0 < n_k < len(keypoints): | |
indices = torch.argsort(scores, descending=True) | |
keypoints = keypoints[indices] | |
descriptors = descriptors[indices] | |
scores = scores[indices] | |
if 0 < n_k < len(keypoints): | |
keypoints = keypoints[0:n_k] | |
descriptors = descriptors[0:n_k] | |
scores = scores[0:n_k] | |
return {"keypoints": keypoints, "descriptors": descriptors, "scores": scores} | |
def extract_method(m): | |
hpatches = HPatchesDataset(root=dataset_root, alteration="all") | |
model = m[:7] | |
min_scale = 0.3 if m[8:] == "ms" else 1.0 | |
model = ALike(**configs[model], device=device, top_k=0, scores_th=0.2, n_limit=5000) | |
progbar = tqdm(hpatches, desc="Extracting for {}".format(m)) | |
for imgs, homos, seq_name in progbar: | |
for i in range(1, 7): | |
img = imgs[i - 1] | |
pred = extract_multiscale( | |
model, img, min_scale=min_scale, max_scale=1, sort=False, n_k=5000 | |
) | |
kpts, descs, scores = pred["keypoints"], pred["descriptors"], pred["scores"] | |
with open(os.path.join(dataset_root, seq_name, f"{i}.ppm.{m}"), "wb") as f: | |
np.savez( | |
f, | |
keypoints=kpts.cpu().numpy(), | |
scores=scores.cpu().numpy(), | |
descriptors=descs.cpu().numpy(), | |
) | |
if __name__ == "__main__": | |
for method in methods: | |
extract_method(method) | |