Spaces:
Sleeping
Sleeping
import torch | |
import warnings | |
from kornia.feature.loftr.loftr import default_cfg | |
from kornia.feature import LoFTR as LoFTR_ | |
from hloc import logger | |
from ..utils.base_model import BaseModel | |
class LoFTR(BaseModel): | |
default_conf = { | |
"weights": "outdoor", | |
"match_threshold": 0.2, | |
"max_num_matches": None, | |
} | |
required_inputs = ["image0", "image1"] | |
def _init(self, conf): | |
cfg = default_cfg | |
cfg["match_coarse"]["thr"] = conf["match_threshold"] | |
self.net = LoFTR_(pretrained=conf["weights"], config=cfg) | |
logger.info(f"Loaded LoFTR with weights {conf['weights']}") | |
def _forward(self, data): | |
# For consistency with hloc pairs, we refine kpts in image0! | |
rename = { | |
"keypoints0": "keypoints1", | |
"keypoints1": "keypoints0", | |
"image0": "image1", | |
"image1": "image0", | |
"mask0": "mask1", | |
"mask1": "mask0", | |
} | |
data_ = {rename[k]: v for k, v in data.items()} | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
pred = self.net(data_) | |
scores = pred["confidence"] | |
top_k = self.conf["max_num_matches"] | |
if top_k is not None and len(scores) > top_k: | |
keep = torch.argsort(scores, descending=True)[:top_k] | |
pred["keypoints0"], pred["keypoints1"] = ( | |
pred["keypoints0"][keep], | |
pred["keypoints1"][keep], | |
) | |
scores = scores[keep] | |
# Switch back indices | |
pred = {(rename[k] if k in rename else k): v for k, v in pred.items()} | |
pred["scores"] = scores | |
del pred["confidence"] | |
return pred | |