Spaces:
Sleeping
Sleeping
import sys | |
from pathlib import Path | |
import torch | |
from PIL import Image | |
import subprocess | |
from ..utils.base_model import BaseModel | |
from .. import logger | |
sys.path.append(str(Path(__file__).parent / "../../third_party")) | |
from DKM.dkm import DKMv3_outdoor | |
dkm_path = Path(__file__).parent / "../../third_party/DKM" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class DKMv3(BaseModel): | |
default_conf = { | |
"model_name": "DKMv3_outdoor.pth", | |
"match_threshold": 0.2, | |
"checkpoint_dir": dkm_path / "pretrained", | |
"max_keypoints": -1, | |
} | |
required_inputs = [ | |
"image0", | |
"image1", | |
] | |
# Models exported using | |
dkm_models = { | |
"DKMv3_outdoor.pth": "https://github.com/Parskatt/storage/releases/download/dkmv3/DKMv3_outdoor.pth", | |
"DKMv3_indoor.pth": "https://github.com/Parskatt/storage/releases/download/dkmv3/DKMv3_indoor.pth", | |
} | |
def _init(self, conf): | |
model_path = dkm_path / "pretrained" / conf["model_name"] | |
# Download the model. | |
if not model_path.exists(): | |
model_path.parent.mkdir(exist_ok=True) | |
link = self.dkm_models[conf["model_name"]] | |
cmd = ["wget", link, "-O", str(model_path)] | |
logger.info(f"Downloading the DKMv3 model with `{cmd}`.") | |
subprocess.run(cmd, check=True) | |
self.net = DKMv3_outdoor(path_to_weights=str(model_path), device=device) | |
logger.info(f"Loading DKMv3 model done") | |
def _forward(self, data): | |
img0 = data["image0"].cpu().numpy().squeeze() * 255 | |
img1 = data["image1"].cpu().numpy().squeeze() * 255 | |
img0 = img0.transpose(1, 2, 0) | |
img1 = img1.transpose(1, 2, 0) | |
img0 = Image.fromarray(img0.astype("uint8")) | |
img1 = Image.fromarray(img1.astype("uint8")) | |
W_A, H_A = img0.size | |
W_B, H_B = img1.size | |
warp, certainty = self.net.match(img0, img1, device=device) | |
matches, certainty = self.net.sample( | |
warp, certainty, num=self.conf["max_keypoints"] | |
) | |
kpts1, kpts2 = self.net.to_pixel_coordinates( | |
matches, H_A, W_A, H_B, W_B | |
) | |
pred = { | |
"keypoints0": kpts1, | |
"keypoints1": kpts2, | |
"mconf": certainty, | |
} | |
breakpoint() | |
return pred | |