Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import torch | |
import numpy as np | |
import os, time, random | |
import argparse | |
from torch.utils.data import Dataset, DataLoader | |
from PIL import Image as PILImage | |
from model.model import InvISPNet | |
from dataset.FiveK_dataset import FiveKDatasetTest | |
from config.config import get_arguments | |
from utils.JPEG import DiffJPEG | |
from utils.commons import denorm, preprocess_test_patch | |
from tqdm import tqdm | |
os.system("nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp") | |
os.environ["CUDA_VISIBLE_DEVICES"] = str( | |
np.argmax([int(x.split()[2]) for x in open("tmp", "r").readlines()]) | |
) | |
# os.environ['CUDA_VISIBLE_DEVICES'] = '7' | |
os.system("rm tmp") | |
DiffJPEG = DiffJPEG(differentiable=True, quality=90).cuda() | |
parser = get_arguments() | |
parser.add_argument("--ckpt", type=str, help="Checkpoint path.") | |
parser.add_argument( | |
"--out_path", type=str, default="./exps/", help="Path to save results. " | |
) | |
parser.add_argument( | |
"--split_to_patch", | |
dest="split_to_patch", | |
action="store_true", | |
help="Test on patch. ", | |
) | |
args = parser.parse_args() | |
print("Parsed arguments: {}".format(args)) | |
ckpt_name = args.ckpt.split("/")[-1].split(".")[0] | |
if args.split_to_patch: | |
os.makedirs( | |
args.out_path + "%s/results_metric_%s/" % (args.task, ckpt_name), exist_ok=True | |
) | |
out_path = args.out_path + "%s/results_metric_%s/" % (args.task, ckpt_name) | |
else: | |
os.makedirs( | |
args.out_path + "%s/results_%s/" % (args.task, ckpt_name), exist_ok=True | |
) | |
out_path = args.out_path + "%s/results_%s/" % (args.task, ckpt_name) | |
def main(args): | |
# ======================================define the model============================================ | |
net = InvISPNet(channel_in=3, channel_out=3, block_num=8) | |
device = torch.device("cuda:0") | |
net.to(device) | |
net.eval() | |
# load the pretrained weight if there exists one | |
if os.path.isfile(args.ckpt): | |
net.load_state_dict(torch.load(args.ckpt), strict=False) | |
print("[INFO] Loaded checkpoint: {}".format(args.ckpt)) | |
print("[INFO] Start data load and preprocessing") | |
RAWDataset = FiveKDatasetTest(opt=args) | |
dataloader = DataLoader( | |
RAWDataset, batch_size=1, shuffle=False, num_workers=0, drop_last=True | |
) | |
print("[INFO] Start test...") | |
for i_batch, sample_batched in enumerate(tqdm(dataloader)): | |
step_time = time.time() | |
input, target_rgb, target_raw = ( | |
sample_batched["input_raw"].to(device), | |
sample_batched["target_rgb"].to(device), | |
sample_batched["target_raw"].to(device), | |
) | |
file_name = sample_batched["file_name"][0] | |
if args.split_to_patch: | |
input_list, target_rgb_list, target_raw_list = preprocess_test_patch( | |
input, target_rgb, target_raw | |
) | |
else: | |
# remove [:,:,::2,::2] if you have enough GPU memory to test the full resolution | |
input_list, target_rgb_list, target_raw_list = ( | |
[input[:, :, ::2, ::2]], | |
[target_rgb[:, :, ::2, ::2]], | |
[target_raw[:, :, ::2, ::2]], | |
) | |
for i_patch in range(len(input_list)): | |
input_patch = input_list[i_patch] | |
target_rgb_patch = target_rgb_list[i_patch] | |
target_raw_patch = target_raw_list[i_patch] | |
with torch.no_grad(): | |
reconstruct_rgb = net(input_patch) | |
reconstruct_rgb = torch.clamp(reconstruct_rgb, 0, 1) | |
pred_rgb = reconstruct_rgb.detach().permute(0, 2, 3, 1) | |
target_rgb_patch = target_rgb_patch.permute(0, 2, 3, 1) | |
pred_rgb = denorm(pred_rgb, 255) | |
target_rgb_patch = denorm(target_rgb_patch, 255) | |
pred_rgb = pred_rgb.cpu().numpy() | |
target_rgb_patch = target_rgb_patch.cpu().numpy().astype(np.float32) | |
# print(type(pred_rgb)) | |
pred = PILImage.fromarray(np.uint8(pred_rgb[0, :, :, :])) | |
tar_pred = PILImage.fromarray( | |
np.hstack( | |
( | |
np.uint8(target_rgb_patch[0, :, :, :]), | |
np.uint8(pred_rgb[0, :, :, :]), | |
) | |
) | |
) | |
tar = PILImage.fromarray(np.uint8(target_rgb_patch[0, :, :, :])) | |
pred.save( | |
out_path + "pred_%s_%05d.jpg" % (file_name, i_patch), | |
quality=90, | |
subsampling=1, | |
) | |
tar.save( | |
out_path + "tar_%s_%05d.jpg" % (file_name, i_patch), | |
quality=90, | |
subsampling=1, | |
) | |
tar_pred.save( | |
out_path + "gt_pred_%s_%05d.jpg" % (file_name, i_patch), | |
quality=90, | |
subsampling=1, | |
) | |
del reconstruct_rgb | |
if __name__ == "__main__": | |
torch.set_num_threads(4) | |
main(args) | |