Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import time | |
eps = 1e-8 | |
def sinkhorn(M, r, c, iteration): | |
p = torch.softmax(M, dim=-1) | |
u = torch.ones_like(r) | |
v = torch.ones_like(c) | |
for _ in range(iteration): | |
u = r / ((p * v.unsqueeze(-2)).sum(-1) + eps) | |
v = c / ((p * u.unsqueeze(-1)).sum(-2) + eps) | |
p = p * u.unsqueeze(-1) * v.unsqueeze(-2) | |
return p | |
def sink_algorithm(M, dustbin, iteration): | |
M = torch.cat([M, dustbin.expand([M.shape[0], M.shape[1], 1])], dim=-1) | |
M = torch.cat([M, dustbin.expand([M.shape[0], 1, M.shape[2]])], dim=-2) | |
r = torch.ones([M.shape[0], M.shape[1] - 1], device="cuda") | |
r = torch.cat([r, torch.ones([M.shape[0], 1], device="cuda") * M.shape[1]], dim=-1) | |
c = torch.ones([M.shape[0], M.shape[2] - 1], device="cuda") | |
c = torch.cat([c, torch.ones([M.shape[0], 1], device="cuda") * M.shape[2]], dim=-1) | |
p = sinkhorn(M, r, c, iteration) | |
return p | |
class attention_block(nn.Module): | |
def __init__(self, channels, head, type): | |
assert type == "self" or type == "cross", "invalid attention type" | |
nn.Module.__init__(self) | |
self.head = head | |
self.type = type | |
self.head_dim = channels // head | |
self.query_filter = nn.Conv1d(channels, channels, kernel_size=1) | |
self.key_filter = nn.Conv1d(channels, channels, kernel_size=1) | |
self.value_filter = nn.Conv1d(channels, channels, kernel_size=1) | |
self.attention_filter = nn.Sequential( | |
nn.Conv1d(2 * channels, 2 * channels, kernel_size=1), | |
nn.SyncBatchNorm(2 * channels), | |
nn.ReLU(), | |
nn.Conv1d(2 * channels, channels, kernel_size=1), | |
) | |
self.mh_filter = nn.Conv1d(channels, channels, kernel_size=1) | |
def forward(self, fea1, fea2): | |
batch_size, n, m = fea1.shape[0], fea1.shape[2], fea2.shape[2] | |
query1, key1, value1 = ( | |
self.query_filter(fea1).view(batch_size, self.head_dim, self.head, -1), | |
self.key_filter(fea1).view(batch_size, self.head_dim, self.head, -1), | |
self.value_filter(fea1).view(batch_size, self.head_dim, self.head, -1), | |
) | |
query2, key2, value2 = ( | |
self.query_filter(fea2).view(batch_size, self.head_dim, self.head, -1), | |
self.key_filter(fea2).view(batch_size, self.head_dim, self.head, -1), | |
self.value_filter(fea2).view(batch_size, self.head_dim, self.head, -1), | |
) | |
if self.type == "self": | |
score1, score2 = torch.softmax( | |
torch.einsum("bdhn,bdhm->bhnm", query1, key1) / self.head_dim**0.5, | |
dim=-1, | |
), torch.softmax( | |
torch.einsum("bdhn,bdhm->bhnm", query2, key2) / self.head_dim**0.5, | |
dim=-1, | |
) | |
add_value1, add_value2 = torch.einsum( | |
"bhnm,bdhm->bdhn", score1, value1 | |
), torch.einsum("bhnm,bdhm->bdhn", score2, value2) | |
else: | |
score1, score2 = torch.softmax( | |
torch.einsum("bdhn,bdhm->bhnm", query1, key2) / self.head_dim**0.5, | |
dim=-1, | |
), torch.softmax( | |
torch.einsum("bdhn,bdhm->bhnm", query2, key1) / self.head_dim**0.5, | |
dim=-1, | |
) | |
add_value1, add_value2 = torch.einsum( | |
"bhnm,bdhm->bdhn", score1, value2 | |
), torch.einsum("bhnm,bdhm->bdhn", score2, value1) | |
add_value1, add_value2 = self.mh_filter( | |
add_value1.contiguous().view(batch_size, self.head * self.head_dim, n) | |
), self.mh_filter( | |
add_value2.contiguous().view(batch_size, self.head * self.head_dim, m) | |
) | |
fea11, fea22 = torch.cat([fea1, add_value1], dim=1), torch.cat( | |
[fea2, add_value2], dim=1 | |
) | |
fea1, fea2 = fea1 + self.attention_filter(fea11), fea2 + self.attention_filter( | |
fea22 | |
) | |
return fea1, fea2 | |
class matcher(nn.Module): | |
def __init__(self, config): | |
nn.Module.__init__(self) | |
self.use_score_encoding = config.use_score_encoding | |
self.layer_num = config.layer_num | |
self.sink_iter = config.sink_iter | |
self.position_encoder = nn.Sequential( | |
nn.Conv1d(3, 32, kernel_size=1) | |
if config.use_score_encoding | |
else nn.Conv1d(2, 32, kernel_size=1), | |
nn.SyncBatchNorm(32), | |
nn.ReLU(), | |
nn.Conv1d(32, 64, kernel_size=1), | |
nn.SyncBatchNorm(64), | |
nn.ReLU(), | |
nn.Conv1d(64, 128, kernel_size=1), | |
nn.SyncBatchNorm(128), | |
nn.ReLU(), | |
nn.Conv1d(128, 256, kernel_size=1), | |
nn.SyncBatchNorm(256), | |
nn.ReLU(), | |
nn.Conv1d(256, config.net_channels, kernel_size=1), | |
) | |
self.dustbin = nn.Parameter(torch.tensor(1, dtype=torch.float32, device="cuda")) | |
self.self_attention_block = nn.Sequential( | |
*[ | |
attention_block(config.net_channels, config.head, "self") | |
for _ in range(config.layer_num) | |
] | |
) | |
self.cross_attention_block = nn.Sequential( | |
*[ | |
attention_block(config.net_channels, config.head, "cross") | |
for _ in range(config.layer_num) | |
] | |
) | |
self.final_project = nn.Conv1d( | |
config.net_channels, config.net_channels, kernel_size=1 | |
) | |
def forward(self, data, test_mode=True): | |
desc1, desc2 = data["desc1"], data["desc2"] | |
desc1, desc2 = torch.nn.functional.normalize( | |
desc1, dim=-1 | |
), torch.nn.functional.normalize(desc2, dim=-1) | |
desc1, desc2 = desc1.transpose(1, 2), desc2.transpose(1, 2) | |
if test_mode: | |
encode_x1, encode_x2 = data["x1"], data["x2"] | |
else: | |
encode_x1, encode_x2 = data["aug_x1"], data["aug_x2"] | |
if not self.use_score_encoding: | |
encode_x1, encode_x2 = encode_x1[:, :, :2], encode_x2[:, :, :2] | |
encode_x1, encode_x2 = encode_x1.transpose(1, 2), encode_x2.transpose(1, 2) | |
x1_pos_embedding, x2_pos_embedding = self.position_encoder( | |
encode_x1 | |
), self.position_encoder(encode_x2) | |
aug_desc1, aug_desc2 = x1_pos_embedding + desc1, x2_pos_embedding + desc2 | |
for i in range(self.layer_num): | |
aug_desc1, aug_desc2 = self.self_attention_block[i](aug_desc1, aug_desc2) | |
aug_desc1, aug_desc2 = self.cross_attention_block[i](aug_desc1, aug_desc2) | |
aug_desc1, aug_desc2 = self.final_project(aug_desc1), self.final_project( | |
aug_desc2 | |
) | |
desc_mat = torch.matmul(aug_desc1.transpose(1, 2), aug_desc2) | |
p = sink_algorithm(desc_mat, self.dustbin, self.sink_iter[0]) | |
return {"p": p} | |