Spaces:
Sleeping
Sleeping
import os | |
import glob | |
import pickle | |
from posixpath import basename | |
import numpy as np | |
import h5py | |
from .base_dumper import BaseDumper | |
import sys | |
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) | |
sys.path.insert(0, ROOT_DIR) | |
import utils | |
class scannet(BaseDumper): | |
def get_seqs(self): | |
self.pair_list = np.loadtxt("../assets/scannet_eval_list.txt", dtype=str) | |
self.seq_list = np.unique( | |
np.asarray([path.split("/")[0] for path in self.pair_list[:, 0]], dtype=str) | |
) | |
self.dump_seq, self.img_seq = [], [] | |
for seq in self.seq_list: | |
dump_dir = os.path.join(self.config["feature_dump_dir"], seq) | |
cur_img_seq = glob.glob( | |
os.path.join( | |
os.path.join(self.config["rawdata_dir"], seq, "img", "*.jpg") | |
) | |
) | |
cur_dump_seq = [ | |
os.path.join(dump_dir, path.split("/")[-1]) | |
+ "_" | |
+ self.config["extractor"]["name"] | |
+ "_" | |
+ str(self.config["extractor"]["num_kpt"]) | |
+ ".hdf5" | |
for path in cur_img_seq | |
] | |
self.img_seq += cur_img_seq | |
self.dump_seq += cur_dump_seq | |
def format_dump_folder(self): | |
if not os.path.exists(self.config["feature_dump_dir"]): | |
os.mkdir(self.config["feature_dump_dir"]) | |
for seq in self.seq_list: | |
seq_dir = os.path.join(self.config["feature_dump_dir"], seq) | |
if not os.path.exists(seq_dir): | |
os.mkdir(seq_dir) | |
def format_dump_data(self): | |
print("Formatting data...") | |
self.data = { | |
"K1": [], | |
"K2": [], | |
"R": [], | |
"T": [], | |
"e": [], | |
"f": [], | |
"fea_path1": [], | |
"fea_path2": [], | |
"img_path1": [], | |
"img_path2": [], | |
} | |
for pair in self.pair_list: | |
img_path1, img_path2 = pair[0], pair[1] | |
seq = img_path1.split("/")[0] | |
index1, index2 = int(img_path1.split("/")[-1][:-4]), int( | |
img_path2.split("/")[-1][:-4] | |
) | |
ex1, ex2 = np.loadtxt( | |
os.path.join( | |
self.config["rawdata_dir"], seq, "extrinsic", str(index1) + ".txt" | |
), | |
dtype=float, | |
), np.loadtxt( | |
os.path.join( | |
self.config["rawdata_dir"], seq, "extrinsic", str(index2) + ".txt" | |
), | |
dtype=float, | |
) | |
K1, K2 = np.loadtxt( | |
os.path.join( | |
self.config["rawdata_dir"], seq, "intrinsic", str(index1) + ".txt" | |
), | |
dtype=float, | |
), np.loadtxt( | |
os.path.join( | |
self.config["rawdata_dir"], seq, "intrinsic", str(index2) + ".txt" | |
), | |
dtype=float, | |
) | |
relative_extrinsic = np.matmul(np.linalg.inv(ex2), ex1) | |
dR, dt = relative_extrinsic[:3, :3], relative_extrinsic[:3, 3] | |
dt /= np.sqrt(np.sum(dt**2)) | |
e_gt_unnorm = np.reshape( | |
np.matmul( | |
np.reshape( | |
utils.evaluation_utils.np_skew_symmetric( | |
dt.astype("float64").reshape(1, 3) | |
), | |
(3, 3), | |
), | |
np.reshape(dR.astype("float64"), (3, 3)), | |
), | |
(3, 3), | |
) | |
e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm) | |
f_gt_unnorm = np.linalg.inv(K2.T) @ e_gt @ np.linalg.inv(K1) | |
f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm) | |
self.data["K1"].append(K1), self.data["K2"].append(K2) | |
self.data["R"].append(dR), self.data["T"].append(dt) | |
self.data["e"].append(e_gt), self.data["f"].append(f_gt) | |
dump_seq_dir = os.path.join(self.config["feature_dump_dir"], seq) | |
fea_path1, fea_path2 = os.path.join( | |
dump_seq_dir, | |
img_path1.split("/")[-1] | |
+ "_" | |
+ self.config["extractor"]["name"] | |
+ "_" | |
+ str(self.config["extractor"]["num_kpt"]) | |
+ ".hdf5", | |
), os.path.join( | |
dump_seq_dir, | |
img_path2.split("/")[-1] | |
+ "_" | |
+ self.config["extractor"]["name"] | |
+ "_" | |
+ str(self.config["extractor"]["num_kpt"]) | |
+ ".hdf5", | |
) | |
self.data["img_path1"].append(img_path1), self.data["img_path2"].append( | |
img_path2 | |
) | |
self.data["fea_path1"].append(fea_path1), self.data["fea_path2"].append( | |
fea_path2 | |
) | |
self.form_standard_dataset() | |